\(\int \frac {1}{(\sin (x)+\sin (5 x))^5} \, dx\) [27]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 9, antiderivative size = 221 \[ \int \frac {1}{(\sin (x)+\sin (5 x))^5} \, dx=-\frac {3889 \text {arctanh}(\cos (x))}{186624}-\frac {332929 \text {arctanh}(2 \cos (x))}{2916}+\frac {82683 \text {arctanh}\left (\sqrt {2} \cos (x)\right )}{512 \sqrt {2}}-\frac {1}{108 (1-2 \cos (x))^4}+\frac {19}{162 (1-2 \cos (x))^3}-\frac {749}{648 (1-2 \cos (x))^2}+\frac {71551}{5832 (1-2 \cos (x))}-\frac {1}{124416 (1-\cos (x))^2}-\frac {209}{373248 (1-\cos (x))}+\frac {1}{124416 (1+\cos (x))^2}+\frac {209}{373248 (1+\cos (x))}+\frac {1}{108 (1+2 \cos (x))^4}-\frac {19}{162 (1+2 \cos (x))^3}+\frac {749}{648 (1+2 \cos (x))^2}-\frac {71551}{5832 (1+2 \cos (x))}-\frac {11643}{512} \cos (x) \sec (2 x)+\frac {681}{256} \cos (x) \sec ^2(2 x)-\frac {21}{64} \cos (x) \sec ^3(2 x)+\frac {1}{32} \cos (x) \sec ^4(2 x) \] Output:

-3889/186624*arctanh(cos(x))-332929/2916*arctanh(2*cos(x))+82683/1024*arct 
anh(cos(x)*2^(1/2))*2^(1/2)-1/108/(1-2*cos(x))^4+19/162/(1-2*cos(x))^3-749 
/648/(1-2*cos(x))^2+71551/(5832-11664*cos(x))-1/124416/(1-cos(x))^2-209/(3 
73248-373248*cos(x))+1/124416/(1+cos(x))^2+209/(373248+373248*cos(x))+1/10 
8/(1+2*cos(x))^4-19/162/(1+2*cos(x))^3+749/648/(1+2*cos(x))^2-71551/(5832+ 
11664*cos(x))-11643/512*cos(x)*sec(2*x)+681/256*cos(x)*sec(2*x)^2-21/64*co 
s(x)*sec(2*x)^3+1/32*cos(x)*sec(2*x)^4
 

Mathematica [A] (verified)

Time = 2.47 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.33 \[ \int \frac {1}{(\sin (x)+\sin (5 x))^5} \, dx=\frac {-120551814 \sqrt {2} \text {arctanh}\left (\frac {-1+\tan \left (\frac {x}{2}\right )}{\sqrt {2}}\right )+120551814 \sqrt {2} \text {arctanh}\left (\frac {1+\tan \left (\frac {x}{2}\right )}{\sqrt {2}}\right )-\frac {13824}{(1-2 \cos (x))^4}-\frac {1725696}{(1-2 \cos (x))^2}+\frac {18317056}{1-2 \cos (x)}-\frac {175104}{(-1+2 \cos (x))^3}+\frac {13824}{(1+2 \cos (x))^4}-\frac {175104}{(1+2 \cos (x))^3}+\frac {1725696}{(1+2 \cos (x))^2}-\frac {18317056}{1+2 \cos (x)}-418 \csc ^2\left (\frac {x}{2}\right )-3 \csc ^4\left (\frac {x}{2}\right )-31112 \log \left (\cos \left (\frac {x}{2}\right )\right )+85229824 \log (1-2 \cos (x))-85229824 \log (1+2 \cos (x))+31112 \log \left (\sin \left (\frac {x}{2}\right )\right )+418 \sec ^2\left (\frac {x}{2}\right )+3 \sec ^4\left (\frac {x}{2}\right )-\frac {110808}{(\cos (x)-\sin (x))^3}-\frac {15100506}{\cos (x)-\sin (x)}+\frac {11664 \sin (x)}{(\cos (x)-\sin (x))^4}+\frac {1874988 \sin (x)}{(\cos (x)-\sin (x))^2}-\frac {11664 \sin (x)}{(\cos (x)+\sin (x))^4}-\frac {110808}{(\cos (x)+\sin (x))^3}-\frac {1874988 \sin (x)}{(\cos (x)+\sin (x))^2}-\frac {15100506}{\cos (x)+\sin (x)}}{1492992} \] Input:

Integrate[(Sin[x] + Sin[5*x])^(-5),x]
 

Output:

(-120551814*Sqrt[2]*ArcTanh[(-1 + Tan[x/2])/Sqrt[2]] + 120551814*Sqrt[2]*A 
rcTanh[(1 + Tan[x/2])/Sqrt[2]] - 13824/(1 - 2*Cos[x])^4 - 1725696/(1 - 2*C 
os[x])^2 + 18317056/(1 - 2*Cos[x]) - 175104/(-1 + 2*Cos[x])^3 + 13824/(1 + 
 2*Cos[x])^4 - 175104/(1 + 2*Cos[x])^3 + 1725696/(1 + 2*Cos[x])^2 - 183170 
56/(1 + 2*Cos[x]) - 418*Csc[x/2]^2 - 3*Csc[x/2]^4 - 31112*Log[Cos[x/2]] + 
85229824*Log[1 - 2*Cos[x]] - 85229824*Log[1 + 2*Cos[x]] + 31112*Log[Sin[x/ 
2]] + 418*Sec[x/2]^2 + 3*Sec[x/2]^4 - 110808/(Cos[x] - Sin[x])^3 - 1510050 
6/(Cos[x] - Sin[x]) + (11664*Sin[x])/(Cos[x] - Sin[x])^4 + (1874988*Sin[x] 
)/(Cos[x] - Sin[x])^2 - (11664*Sin[x])/(Cos[x] + Sin[x])^4 - 110808/(Cos[x 
] + Sin[x])^3 - (1874988*Sin[x])/(Cos[x] + Sin[x])^2 - 15100506/(Cos[x] + 
Sin[x]))/1492992
 

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 256, normalized size of antiderivative = 1.16, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.556, Rules used = {3042, 4824, 27, 1567, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(\sin (x)+\sin (5 x))^5} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(\sin (x)+\sin (5 x))^5}dx\)

\(\Big \downarrow \) 4824

\(\displaystyle -\int \frac {1}{32 \left (1-\cos ^2(x)\right )^3 \left (8 \cos ^4(x)-6 \cos ^2(x)+1\right )^5}d\cos (x)\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {1}{32} \int \frac {1}{\left (1-\cos ^2(x)\right )^3 \left (8 \cos ^4(x)-6 \cos ^2(x)+1\right )^5}d\cos (x)\)

\(\Big \downarrow \) 1567

\(\displaystyle -\frac {1}{32} \int \left (\frac {4440}{2 \cos ^2(x)-1}-\frac {5326864}{729 \left (4 \cos ^2(x)-1\right )}+\frac {209}{11664 (\cos (x)-1)^2}+\frac {209}{11664 (\cos (x)+1)^2}-\frac {572408}{729 (2 \cos (x)-1)^2}-\frac {572408}{729 (2 \cos (x)+1)^2}-\frac {1200}{\left (2 \cos ^2(x)-1\right )^2}-\frac {1}{1944 (\cos (x)-1)^3}+\frac {1}{1944 (\cos (x)+1)^3}-\frac {11984}{81 (2 \cos (x)-1)^3}+\frac {11984}{81 (2 \cos (x)+1)^3}+\frac {288}{\left (2 \cos ^2(x)-1\right )^3}-\frac {608}{27 (2 \cos (x)-1)^4}-\frac {608}{27 (2 \cos (x)+1)^4}-\frac {56}{\left (2 \cos ^2(x)-1\right )^4}-\frac {64}{27 (2 \cos (x)-1)^5}+\frac {64}{27 (2 \cos (x)+1)^5}+\frac {8}{\left (2 \cos ^2(x)-1\right )^5}-\frac {3889}{5832 \left (\cos ^2(x)-1\right )}\right )d\cos (x)\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{32} \left (-\frac {3889 \text {arctanh}(\cos (x))}{5832}-\frac {2663432}{729} \text {arctanh}(2 \cos (x))+2574 \sqrt {2} \text {arctanh}\left (\sqrt {2} \cos (x)\right )+\frac {315 \text {arctanh}\left (\sqrt {2} \cos (x)\right )}{16 \sqrt {2}}+\frac {11643 \cos (x)}{16 \left (1-2 \cos ^2(x)\right )}+\frac {681 \cos (x)}{8 \left (1-2 \cos ^2(x)\right )^2}+\frac {21 \cos (x)}{2 \left (1-2 \cos ^2(x)\right )^3}+\frac {\cos (x)}{\left (1-2 \cos ^2(x)\right )^4}+\frac {286204}{729 (1-2 \cos (x))}-\frac {209}{11664 (1-\cos (x))}+\frac {209}{11664 (\cos (x)+1)}-\frac {286204}{729 (2 \cos (x)+1)}-\frac {2996}{81 (1-2 \cos (x))^2}-\frac {1}{3888 (1-\cos (x))^2}+\frac {1}{3888 (\cos (x)+1)^2}+\frac {2996}{81 (2 \cos (x)+1)^2}+\frac {304}{81 (1-2 \cos (x))^3}-\frac {304}{81 (2 \cos (x)+1)^3}-\frac {8}{27 (1-2 \cos (x))^4}+\frac {8}{27 (2 \cos (x)+1)^4}\right )\)

Input:

Int[(Sin[x] + Sin[5*x])^(-5),x]
 

Output:

((-3889*ArcTanh[Cos[x]])/5832 - (2663432*ArcTanh[2*Cos[x]])/729 + (315*Arc 
Tanh[Sqrt[2]*Cos[x]])/(16*Sqrt[2]) + 2574*Sqrt[2]*ArcTanh[Sqrt[2]*Cos[x]] 
- 8/(27*(1 - 2*Cos[x])^4) + 304/(81*(1 - 2*Cos[x])^3) - 2996/(81*(1 - 2*Co 
s[x])^2) + 286204/(729*(1 - 2*Cos[x])) - 1/(3888*(1 - Cos[x])^2) - 209/(11 
664*(1 - Cos[x])) + 1/(3888*(1 + Cos[x])^2) + 209/(11664*(1 + Cos[x])) + 8 
/(27*(1 + 2*Cos[x])^4) - 304/(81*(1 + 2*Cos[x])^3) + 2996/(81*(1 + 2*Cos[x 
])^2) - 286204/(729*(1 + 2*Cos[x])) + Cos[x]/(1 - 2*Cos[x]^2)^4 + (21*Cos[ 
x])/(2*(1 - 2*Cos[x]^2)^3) + (681*Cos[x])/(8*(1 - 2*Cos[x]^2)^2) + (11643* 
Cos[x])/(16*(1 - 2*Cos[x]^2)))/32
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1567
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x 
_Symbol] :> Int[ExpandIntegrand[(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] 
 /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b^2 - 4*a*c, 0] && ((IntegerQ[p] 
 && IntegerQ[q]) || IGtQ[p, 0] || IGtQ[q, 0])
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4824
Int[((a_.)*sin[(m_.)*((c_.) + (d_.)*(x_))] + (b_.)*sin[(n_.)*((c_.) + (d_.) 
*(x_))])^(p_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Simplify[TrigExpand[a* 
Sin[m*ArcCos[x]] + b*Sin[n*ArcCos[x]]]]^p/Sqrt[1 - x^2], x], x, Cos[c + d*x 
]], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[(p - 1)/2, 0] && IntegerQ[(m - 1)/ 
2] && IntegerQ[(n - 1)/2]
 
Maple [A] (verified)

Time = 115.15 (sec) , antiderivative size = 2, normalized size of antiderivative = 0.01

method result size
parallelrisch \(0\) \(2\)
default \(-\frac {1}{108 \left (2 \cos \left (x \right )-1\right )^{4}}-\frac {19}{162 \left (2 \cos \left (x \right )-1\right )^{3}}-\frac {749}{648 \left (2 \cos \left (x \right )-1\right )^{2}}-\frac {71551}{5832 \left (2 \cos \left (x \right )-1\right )}+\frac {332929 \ln \left (2 \cos \left (x \right )-1\right )}{5832}+\frac {1}{108 \left (2 \cos \left (x \right )+1\right )^{4}}-\frac {19}{162 \left (2 \cos \left (x \right )+1\right )^{3}}+\frac {749}{648 \left (2 \cos \left (x \right )+1\right )^{2}}-\frac {71551}{5832 \left (2 \cos \left (x \right )+1\right )}-\frac {332929 \ln \left (2 \cos \left (x \right )+1\right )}{5832}-\frac {1}{124416 \left (\cos \left (x \right )-1\right )^{2}}+\frac {209}{373248 \left (\cos \left (x \right )-1\right )}+\frac {3889 \ln \left (\cos \left (x \right )-1\right )}{373248}-\frac {4 \left (\frac {11643 \cos \left (x \right )^{7}}{256}-\frac {36291 \cos \left (x \right )^{5}}{512}+\frac {37821 \cos \left (x \right )^{3}}{1024}-\frac {13189 \cos \left (x \right )}{2048}\right )}{\left (2 \cos \left (x \right )^{2}-1\right )^{4}}+\frac {82683 \,\operatorname {arctanh}\left (\sqrt {2}\, \cos \left (x \right )\right ) \sqrt {2}}{1024}+\frac {1}{124416 \left (1+\cos \left (x \right )\right )^{2}}+\frac {209}{373248 \left (1+\cos \left (x \right )\right )}-\frac {3889 \ln \left (1+\cos \left (x \right )\right )}{373248}\) \(193\)
risch \(-\frac {5881813 \,{\mathrm e}^{39 i x}+2770929 \,{\mathrm e}^{37 i x}+16666827 \,{\mathrm e}^{35 i x}-11603277 \,{\mathrm e}^{33 i x}+2153987 \,{\mathrm e}^{31 i x}-49799073 \,{\mathrm e}^{29 i x}-11124845 \,{\mathrm e}^{27 i x}-29440353 \,{\mathrm e}^{25 i x}+33090774 \,{\mathrm e}^{23 i x}+41444690 \,{\mathrm e}^{21 i x}+41444690 \,{\mathrm e}^{19 i x}+33090774 \,{\mathrm e}^{17 i x}-29440353 \,{\mathrm e}^{15 i x}-11124845 \,{\mathrm e}^{13 i x}-49799073 \,{\mathrm e}^{11 i x}+2153987 \,{\mathrm e}^{9 i x}-11603277 \,{\mathrm e}^{7 i x}+16666827 \,{\mathrm e}^{5 i x}+2770929 \,{\mathrm e}^{3 i x}+5881813 \,{\mathrm e}^{i x}}{124416 \left ({\mathrm e}^{10 i x}+{\mathrm e}^{6 i x}-{\mathrm e}^{4 i x}-1\right )^{4}}+\frac {3889 \ln \left ({\mathrm e}^{i x}-1\right )}{186624}-\frac {3889 \ln \left ({\mathrm e}^{i x}+1\right )}{186624}+\frac {332929 \ln \left ({\mathrm e}^{2 i x}-{\mathrm e}^{i x}+1\right )}{5832}+\frac {82683 \sqrt {2}\, \ln \left ({\mathrm e}^{2 i x}+\sqrt {2}\, {\mathrm e}^{i x}+1\right )}{2048}-\frac {82683 \sqrt {2}\, \ln \left ({\mathrm e}^{2 i x}-\sqrt {2}\, {\mathrm e}^{i x}+1\right )}{2048}-\frac {332929 \ln \left ({\mathrm e}^{2 i x}+{\mathrm e}^{i x}+1\right )}{5832}\) \(263\)

Input:

int(1/(sin(x)+sin(5*x))^5,x,method=_RETURNVERBOSE)
 

Output:

0
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 533 vs. \(2 (175) = 350\).

Time = 0.21 (sec) , antiderivative size = 533, normalized size of antiderivative = 2.41 \[ \int \frac {1}{(\sin (x)+\sin (5 x))^5} \, dx=\text {Too large to display} \] Input:

integrate(1/(sin(x)+sin(5*x))^5,x, algorithm="fricas")
 

Output:

-1/1492992*(144551436288*cos(x)^19 - 669594734592*cos(x)^17 + 132648439296 
0*cos(x)^15 - 1475815977984*cos(x)^13 + 1017399847392*cos(x)^11 - 45122761 
5984*cos(x)^9 + 128907781608*cos(x)^7 - 22906808436*cos(x)^5 + 2301482760* 
cos(x)^3 - 60275907*(4096*sqrt(2)*cos(x)^20 - 20480*sqrt(2)*cos(x)^18 + 44 
544*sqrt(2)*cos(x)^16 - 55552*sqrt(2)*cos(x)^14 + 44048*sqrt(2)*cos(x)^12 
- 23232*sqrt(2)*cos(x)^10 + 8264*sqrt(2)*cos(x)^8 - 1960*sqrt(2)*cos(x)^6 
+ 297*sqrt(2)*cos(x)^4 - 26*sqrt(2)*cos(x)^2 + sqrt(2))*log(-(2*cos(x)^2 + 
 2*sqrt(2)*cos(x) + 1)/(2*cos(x)^2 - 1)) + 15556*(4096*cos(x)^20 - 20480*c 
os(x)^18 + 44544*cos(x)^16 - 55552*cos(x)^14 + 44048*cos(x)^12 - 23232*cos 
(x)^10 + 8264*cos(x)^8 - 1960*cos(x)^6 + 297*cos(x)^4 - 26*cos(x)^2 + 1)*l 
og(1/2*cos(x) + 1/2) - 15556*(4096*cos(x)^20 - 20480*cos(x)^18 + 44544*cos 
(x)^16 - 55552*cos(x)^14 + 44048*cos(x)^12 - 23232*cos(x)^10 + 8264*cos(x) 
^8 - 1960*cos(x)^6 + 297*cos(x)^4 - 26*cos(x)^2 + 1)*log(-1/2*cos(x) + 1/2 
) - 85229824*(4096*cos(x)^20 - 20480*cos(x)^18 + 44544*cos(x)^16 - 55552*c 
os(x)^14 + 44048*cos(x)^12 - 23232*cos(x)^10 + 8264*cos(x)^8 - 1960*cos(x) 
^6 + 297*cos(x)^4 - 26*cos(x)^2 + 1)*log(-2*cos(x) + 1) + 85229824*(4096*c 
os(x)^20 - 20480*cos(x)^18 + 44544*cos(x)^16 - 55552*cos(x)^14 + 44048*cos 
(x)^12 - 23232*cos(x)^10 + 8264*cos(x)^8 - 1960*cos(x)^6 + 297*cos(x)^4 - 
26*cos(x)^2 + 1)*log(-2*cos(x) - 1) - 99800124*cos(x))/(4096*cos(x)^20 - 2 
0480*cos(x)^18 + 44544*cos(x)^16 - 55552*cos(x)^14 + 44048*cos(x)^12 - ...
 

Sympy [F]

\[ \int \frac {1}{(\sin (x)+\sin (5 x))^5} \, dx=\int \frac {1}{\left (\sin {\left (x \right )} + \sin {\left (5 x \right )}\right )^{5}}\, dx \] Input:

integrate(1/(sin(x)+sin(5*x))**5,x)
 

Output:

Integral((sin(x) + sin(5*x))**(-5), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{(\sin (x)+\sin (5 x))^5} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(1/(sin(x)+sin(5*x))^5,x, algorithm="maxima")
 

Output:

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 439 vs. \(2 (175) = 350\).

Time = 0.14 (sec) , antiderivative size = 439, normalized size of antiderivative = 1.99 \[ \int \frac {1}{(\sin (x)+\sin (5 x))^5} \, dx=\text {Too large to display} \] Input:

integrate(1/(sin(x)+sin(5*x))^5,x, algorithm="giac")
 

Output:

82683/2048*sqrt(2)*log(abs(-4*sqrt(2) - 2*(cos(x) - 1)/(cos(x) + 1) - 6)/a 
bs(4*sqrt(2) - 2*(cos(x) - 1)/(cos(x) + 1) - 6)) + 1/1492992*(424*(cos(x) 
- 1)/(cos(x) + 1) - 23334*(cos(x) - 1)^2/(cos(x) + 1)^2 - 3)*(cos(x) + 1)^ 
2/(cos(x) - 1)^2 - 53/186624*(cos(x) - 1)/(cos(x) + 1) + 1/497664*(cos(x) 
- 1)^2/(cos(x) + 1)^2 - 1/186624*(40193230365*(cos(x) - 1)/(cos(x) + 1) + 
614159700129*(cos(x) - 1)^2/(cos(x) + 1)^2 + 5371001231429*(cos(x) - 1)^3/ 
(cos(x) + 1)^3 + 29725819078749*(cos(x) - 1)^4/(cos(x) + 1)^4 + 1087791336 
74049*(cos(x) - 1)^5/(cos(x) + 1)^5 + 267371188501221*(cos(x) - 1)^6/(cos( 
x) + 1)^6 + 440631281631289*(cos(x) - 1)^7/(cos(x) + 1)^7 + 48095285739900 
3*(cos(x) - 1)^8/(cos(x) + 1)^8 + 343468414091831*(cos(x) - 1)^9/(cos(x) + 
 1)^9 + 160801518474339*(cos(x) - 1)^10/(cos(x) + 1)^10 + 49418961849615*( 
cos(x) - 1)^11/(cos(x) + 1)^11 + 9843279601311*(cos(x) - 1)^12/(cos(x) + 1 
)^12 + 1220388071083*(cos(x) - 1)^13/(cos(x) + 1)^13 + 85441358295*(cos(x) 
 - 1)^14/(cos(x) + 1)^14 + 2577140019*(cos(x) - 1)^15/(cos(x) + 1)^15 + 11 
45634921)/(28*(cos(x) - 1)/(cos(x) + 1) + 66*(cos(x) - 1)^2/(cos(x) + 1)^2 
 + 28*(cos(x) - 1)^3/(cos(x) + 1)^3 + 3*(cos(x) - 1)^4/(cos(x) + 1)^4 + 3) 
^4 + 3889/373248*log(-(cos(x) - 1)/(cos(x) + 1)) - 332929/5832*log(abs(-(c 
os(x) - 1)/(cos(x) + 1) - 3)) + 332929/5832*log(abs(-3*(cos(x) - 1)/(cos(x 
) + 1) - 1))
 

Mupad [B] (verification not implemented)

Time = 22.51 (sec) , antiderivative size = 365, normalized size of antiderivative = 1.65 \[ \int \frac {1}{(\sin (x)+\sin (5 x))^5} \, dx=\text {Too large to display} \] Input:

int(1/(sin(5*x) + sin(x))^5,x)
 

Output:

(3889*log(tan(x/2)))/186624 - (332929*atanh(529350107261172808328824126854 
4485325492309354181/(865823474183712111497215443843082616832*((11878192955 
51787888946106646747265840511864824769*tan(x/2)^2)/21679793289848794179523 
7553242112 - 131979700816923844080997972642519976266618115117/722659776328 
29313931745851080704)) - 8489643408268/8489639855729))/2916 + (82683*2^(1/ 
2)*atanh((13990822351110619332532430968055105855879747*2^(1/2))/(407483448 
8292557252808671232*((86490991110247218528363966682112925439090753*tan(x/2 
)^2)/3056125866219417939606503424 - 55648155071144200663458342222434509839 
31439/1146047199832281727352438784)) - (7339003959353096062245090263610687 
21080365265*2^(1/2)*tan(x/2)^2)/(36673510394633015275278041088*((864909911 
10247218528363966682112925439090753*tan(x/2)^2)/30561258662194179396065034 
24 - 5564815507114420066345834222243450983931439/1146047199832281727352438 
784))))/1024 - ((13*tan(x/2)^2)/62208 + (21212837*tan(x/2)^4)/279936 - (44 
65642615*tan(x/2)^6)/1679616 + (136474677679*tan(x/2)^8)/3359232 - (179028 
5716621*tan(x/2)^10)/5038848 + (154818945941*tan(x/2)^12)/78732 - (1087775 
49985939*tan(x/2)^14)/15116544 + (356491034365231*tan(x/2)^16)/20155392 - 
(440627697903061*tan(x/2)^18)/15116544 + (26719440584471*tan(x/2)^20)/8398 
08 - (38162979312085*tan(x/2)^22)/1679616 + (107200617808633*tan(x/2)^24)/ 
10077696 - (49418813748397*tan(x/2)^26)/15116544 + (820271243347*tan(x/2)^ 
28)/1259712 - (1220385450625*tan(x/2)^30)/15116544 + (75947731603*tan(x...
 

Reduce [F]

\[ \int \frac {1}{(\sin (x)+\sin (5 x))^5} \, dx=\int \frac {1}{\sin \left (5 x \right )^{5}+5 \sin \left (5 x \right )^{4} \sin \left (x \right )+10 \sin \left (5 x \right )^{3} \sin \left (x \right )^{2}+10 \sin \left (5 x \right )^{2} \sin \left (x \right )^{3}+5 \sin \left (5 x \right ) \sin \left (x \right )^{4}+\sin \left (x \right )^{5}}d x \] Input:

int(1/(sin(x)+sin(5*x))^5,x)
 

Output:

int(1/(sin(5*x)**5 + 5*sin(5*x)**4*sin(x) + 10*sin(5*x)**3*sin(x)**2 + 10* 
sin(5*x)**2*sin(x)**3 + 5*sin(5*x)*sin(x)**4 + sin(x)**5),x)