\(\int \sqrt {a+b \arcsin (c x)} \, dx\) [143]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-2)]
Sympy [F]
Maxima [F]
Giac [C] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 12, antiderivative size = 120 \[ \int \sqrt {a+b \arcsin (c x)} \, dx=x \sqrt {a+b \arcsin (c x)}-\frac {\sqrt {b} \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{c}+\frac {\sqrt {b} \sqrt {\frac {\pi }{2}} \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{c} \] Output:

x*(a+b*arcsin(c*x))^(1/2)-1/2*b^(1/2)*2^(1/2)*Pi^(1/2)*cos(a/b)*FresnelS(2 
^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))/c+1/2*b^(1/2)*2^(1/2)*Pi^ 
(1/2)*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(a/b)/ 
c
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.02 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.99 \[ \int \sqrt {a+b \arcsin (c x)} \, dx=\frac {b e^{-\frac {i a}{b}} \left (\sqrt {-\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {3}{2},-\frac {i (a+b \arcsin (c x))}{b}\right )+e^{\frac {2 i a}{b}} \sqrt {\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {3}{2},\frac {i (a+b \arcsin (c x))}{b}\right )\right )}{2 c \sqrt {a+b \arcsin (c x)}} \] Input:

Integrate[Sqrt[a + b*ArcSin[c*x]],x]
 

Output:

(b*(Sqrt[((-I)*(a + b*ArcSin[c*x]))/b]*Gamma[3/2, ((-I)*(a + b*ArcSin[c*x] 
))/b] + E^(((2*I)*a)/b)*Sqrt[(I*(a + b*ArcSin[c*x]))/b]*Gamma[3/2, (I*(a + 
 b*ArcSin[c*x]))/b]))/(2*c*E^((I*a)/b)*Sqrt[a + b*ArcSin[c*x]])
 

Rubi [A] (verified)

Time = 0.83 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.98, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.917, Rules used = {5130, 5224, 25, 3042, 3787, 25, 3042, 3785, 3786, 3832, 3833}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {a+b \arcsin (c x)} \, dx\)

\(\Big \downarrow \) 5130

\(\displaystyle x \sqrt {a+b \arcsin (c x)}-\frac {1}{2} b c \int \frac {x}{\sqrt {1-c^2 x^2} \sqrt {a+b \arcsin (c x)}}dx\)

\(\Big \downarrow \) 5224

\(\displaystyle x \sqrt {a+b \arcsin (c x)}-\frac {\int -\frac {\sin \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))}{2 c}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {\sin \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))}{2 c}+x \sqrt {a+b \arcsin (c x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sin \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))}{2 c}+x \sqrt {a+b \arcsin (c x)}\)

\(\Big \downarrow \) 3787

\(\displaystyle x \sqrt {a+b \arcsin (c x)}-\frac {-\sin \left (\frac {a}{b}\right ) \int \frac {\cos \left (\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))-\cos \left (\frac {a}{b}\right ) \int -\frac {\sin \left (\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))}{2 c}\)

\(\Big \downarrow \) 25

\(\displaystyle x \sqrt {a+b \arcsin (c x)}-\frac {\cos \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))-\sin \left (\frac {a}{b}\right ) \int \frac {\cos \left (\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))}{2 c}\)

\(\Big \downarrow \) 3042

\(\displaystyle x \sqrt {a+b \arcsin (c x)}-\frac {\cos \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))-\sin \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c x)}{b}+\frac {\pi }{2}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))}{2 c}\)

\(\Big \downarrow \) 3785

\(\displaystyle x \sqrt {a+b \arcsin (c x)}-\frac {\cos \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))-2 \sin \left (\frac {a}{b}\right ) \int \cos \left (\frac {a+b \arcsin (c x)}{b}\right )d\sqrt {a+b \arcsin (c x)}}{2 c}\)

\(\Big \downarrow \) 3786

\(\displaystyle x \sqrt {a+b \arcsin (c x)}-\frac {2 \cos \left (\frac {a}{b}\right ) \int \sin \left (\frac {a+b \arcsin (c x)}{b}\right )d\sqrt {a+b \arcsin (c x)}-2 \sin \left (\frac {a}{b}\right ) \int \cos \left (\frac {a+b \arcsin (c x)}{b}\right )d\sqrt {a+b \arcsin (c x)}}{2 c}\)

\(\Big \downarrow \) 3832

\(\displaystyle x \sqrt {a+b \arcsin (c x)}-\frac {\sqrt {2 \pi } \sqrt {b} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )-2 \sin \left (\frac {a}{b}\right ) \int \cos \left (\frac {a+b \arcsin (c x)}{b}\right )d\sqrt {a+b \arcsin (c x)}}{2 c}\)

\(\Big \downarrow \) 3833

\(\displaystyle x \sqrt {a+b \arcsin (c x)}-\frac {\sqrt {2 \pi } \sqrt {b} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )-\sqrt {2 \pi } \sqrt {b} \sin \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{2 c}\)

Input:

Int[Sqrt[a + b*ArcSin[c*x]],x]
 

Output:

x*Sqrt[a + b*ArcSin[c*x]] - (Sqrt[b]*Sqrt[2*Pi]*Cos[a/b]*FresnelS[(Sqrt[2/ 
Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]] - Sqrt[b]*Sqrt[2*Pi]*FresnelC[(Sqrt[ 
2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[a/b])/(2*c)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3785
Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> S 
imp[2/d   Subst[Int[Cos[f*(x^2/d)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, 
d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
 

rule 3786
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[2/d 
   Subst[Int[Sin[f*(x^2/d)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f 
}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
 

rule 3787
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Cos 
[(d*e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] + Simp[Sin[( 
d*e - c*f)/d]   Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c, d 
, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]
 

rule 3832
Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[ 
d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
 

rule 3833
Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[ 
d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
 

rule 5130
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*Ar 
cSin[c*x])^n, x] - Simp[b*c*n   Int[x*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - 
 c^2*x^2]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]
 

rule 5224
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^ 
2)^(p_.), x_Symbol] :> Simp[(1/(b*c^(m + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x 
^2)^p]   Subst[Int[x^n*Sin[-a/b + x/b]^m*Cos[-a/b + x/b]^(2*p + 1), x], x, 
a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] 
 && IGtQ[2*p + 2, 0] && IGtQ[m, 0]
 
Maple [A] (verified)

Time = 0.00 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.56

method result size
default \(-\frac {-\sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, \sqrt {a +b \arcsin \left (c x \right )}\, \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) b -\sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, \sqrt {a +b \arcsin \left (c x \right )}\, \sin \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) b +2 \arcsin \left (c x \right ) \sin \left (-\frac {a +b \arcsin \left (c x \right )}{b}+\frac {a}{b}\right ) b +2 \sin \left (-\frac {a +b \arcsin \left (c x \right )}{b}+\frac {a}{b}\right ) a}{2 c \sqrt {a +b \arcsin \left (c x \right )}}\) \(187\)

Input:

int((a+b*arcsin(c*x))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/2/c/(a+b*arcsin(c*x))^(1/2)*(-2^(1/2)*Pi^(1/2)*(-1/b)^(1/2)*(a+b*arcsin 
(c*x))^(1/2)*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c 
*x))^(1/2)/b)*b-2^(1/2)*Pi^(1/2)*(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)*sin( 
a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*b+2 
*arcsin(c*x)*sin(-(a+b*arcsin(c*x))/b+a/b)*b+2*sin(-(a+b*arcsin(c*x))/b+a/ 
b)*a)
                                                                                    
                                                                                    
 

Fricas [F(-2)]

Exception generated. \[ \int \sqrt {a+b \arcsin (c x)} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+b*arcsin(c*x))^(1/2),x, algorithm="fricas")
 

Output:

Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 

Sympy [F]

\[ \int \sqrt {a+b \arcsin (c x)} \, dx=\int \sqrt {a + b \operatorname {asin}{\left (c x \right )}}\, dx \] Input:

integrate((a+b*asin(c*x))**(1/2),x)
 

Output:

Integral(sqrt(a + b*asin(c*x)), x)
 

Maxima [F]

\[ \int \sqrt {a+b \arcsin (c x)} \, dx=\int { \sqrt {b \arcsin \left (c x\right ) + a} \,d x } \] Input:

integrate((a+b*arcsin(c*x))^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(b*arcsin(c*x) + a), x)
 

Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.39 (sec) , antiderivative size = 531, normalized size of antiderivative = 4.42 \[ \int \sqrt {a+b \arcsin (c x)} \, dx =\text {Too large to display} \] Input:

integrate((a+b*arcsin(c*x))^(1/2),x, algorithm="giac")
 

Output:

1/2*sqrt(2)*sqrt(pi)*a*b*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(a 
bs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I 
*b^2/sqrt(abs(b)) + b*sqrt(abs(b)))*c) + 1/4*I*sqrt(2)*sqrt(pi)*b^2*erf(-1 
/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arc 
sin(c*x) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*b^2/sqrt(abs(b)) + b*sqrt(abs( 
b)))*c) + 1/2*sqrt(2)*sqrt(pi)*a*b*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + 
a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(- 
I*a/b)/((-I*b^2/sqrt(abs(b)) + b*sqrt(abs(b)))*c) - 1/4*I*sqrt(2)*sqrt(pi) 
*b^2*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)* 
sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/((-I*b^2/sqrt(abs(b)) + 
 b*sqrt(abs(b)))*c) - sqrt(pi)*a*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a 
)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(I* 
a/b)/(c*(I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) - sqrt(pi)*a*er 
f(1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b* 
arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/(c*(-I*sqrt(2)*b/sqrt(abs(b)) 
+ sqrt(2)*sqrt(abs(b)))) - 1/2*I*sqrt(b*arcsin(c*x) + a)*e^(I*arcsin(c*x)) 
/c + 1/2*I*sqrt(b*arcsin(c*x) + a)*e^(-I*arcsin(c*x))/c
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \arcsin (c x)} \, dx=\int \sqrt {a+b\,\mathrm {asin}\left (c\,x\right )} \,d x \] Input:

int((a + b*asin(c*x))^(1/2),x)
 

Output:

int((a + b*asin(c*x))^(1/2), x)
 

Reduce [F]

\[ \int \sqrt {a+b \arcsin (c x)} \, dx=\int \sqrt {\mathit {asin} \left (c x \right ) b +a}d x \] Input:

int((a+b*asin(c*x))^(1/2),x)
 

Output:

int(sqrt(asin(c*x)*b + a),x)