\(\int \frac {1}{\sqrt {a+b \arcsin (c x)}} \, dx\) [158]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-2)]
Sympy [F]
Maxima [F]
Giac [C] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 12, antiderivative size = 101 \[ \int \frac {1}{\sqrt {a+b \arcsin (c x)}} \, dx=\frac {\sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{\sqrt {b} c}+\frac {\sqrt {2 \pi } \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{\sqrt {b} c} \] Output:

2^(1/2)*Pi^(1/2)*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2 
)/b^(1/2))/b^(1/2)/c+2^(1/2)*Pi^(1/2)*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsi 
n(c*x))^(1/2)/b^(1/2))*sin(a/b)/b^(1/2)/c
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.02 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.20 \[ \int \frac {1}{\sqrt {a+b \arcsin (c x)}} \, dx=\frac {i e^{-\frac {i a}{b}} \left (-\sqrt {-\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {1}{2},-\frac {i (a+b \arcsin (c x))}{b}\right )+e^{\frac {2 i a}{b}} \sqrt {\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {1}{2},\frac {i (a+b \arcsin (c x))}{b}\right )\right )}{2 c \sqrt {a+b \arcsin (c x)}} \] Input:

Integrate[1/Sqrt[a + b*ArcSin[c*x]],x]
 

Output:

((I/2)*(-(Sqrt[((-I)*(a + b*ArcSin[c*x]))/b]*Gamma[1/2, ((-I)*(a + b*ArcSi 
n[c*x]))/b]) + E^(((2*I)*a)/b)*Sqrt[(I*(a + b*ArcSin[c*x]))/b]*Gamma[1/2, 
(I*(a + b*ArcSin[c*x]))/b]))/(c*E^((I*a)/b)*Sqrt[a + b*ArcSin[c*x]])
 

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.01, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.750, Rules used = {5134, 3042, 3787, 25, 3042, 3785, 3786, 3832, 3833}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {a+b \arcsin (c x)}} \, dx\)

\(\Big \downarrow \) 5134

\(\displaystyle \frac {\int \frac {\cos \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))}{b c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sin \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}+\frac {\pi }{2}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))}{b c}\)

\(\Big \downarrow \) 3787

\(\displaystyle \frac {\cos \left (\frac {a}{b}\right ) \int \frac {\cos \left (\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))-\sin \left (\frac {a}{b}\right ) \int -\frac {\sin \left (\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))}{b c}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sin \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))+\cos \left (\frac {a}{b}\right ) \int \frac {\cos \left (\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))}{b c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sin \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))+\cos \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c x)}{b}+\frac {\pi }{2}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))}{b c}\)

\(\Big \downarrow \) 3785

\(\displaystyle \frac {\sin \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))+2 \cos \left (\frac {a}{b}\right ) \int \cos \left (\frac {a+b \arcsin (c x)}{b}\right )d\sqrt {a+b \arcsin (c x)}}{b c}\)

\(\Big \downarrow \) 3786

\(\displaystyle \frac {2 \sin \left (\frac {a}{b}\right ) \int \sin \left (\frac {a+b \arcsin (c x)}{b}\right )d\sqrt {a+b \arcsin (c x)}+2 \cos \left (\frac {a}{b}\right ) \int \cos \left (\frac {a+b \arcsin (c x)}{b}\right )d\sqrt {a+b \arcsin (c x)}}{b c}\)

\(\Big \downarrow \) 3832

\(\displaystyle \frac {2 \cos \left (\frac {a}{b}\right ) \int \cos \left (\frac {a+b \arcsin (c x)}{b}\right )d\sqrt {a+b \arcsin (c x)}+\sqrt {2 \pi } \sqrt {b} \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{b c}\)

\(\Big \downarrow \) 3833

\(\displaystyle \frac {\sqrt {2 \pi } \sqrt {b} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )+\sqrt {2 \pi } \sqrt {b} \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{b c}\)

Input:

Int[1/Sqrt[a + b*ArcSin[c*x]],x]
 

Output:

(Sqrt[b]*Sqrt[2*Pi]*Cos[a/b]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]]) 
/Sqrt[b]] + Sqrt[b]*Sqrt[2*Pi]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x] 
])/Sqrt[b]]*Sin[a/b])/(b*c)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3785
Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> S 
imp[2/d   Subst[Int[Cos[f*(x^2/d)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, 
d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
 

rule 3786
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[2/d 
   Subst[Int[Sin[f*(x^2/d)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f 
}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
 

rule 3787
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Cos 
[(d*e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] + Simp[Sin[( 
d*e - c*f)/d]   Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c, d 
, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]
 

rule 3832
Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[ 
d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
 

rule 3833
Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[ 
d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
 

rule 5134
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[1/(b*c)   Su 
bst[Int[x^n*Cos[-a/b + x/b], x], x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, 
c, n}, x]
 
Maple [A] (verified)

Time = 0.00 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.89

method result size
default \(\frac {\sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, \left (\cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right )-\sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right )\right )}{c}\) \(90\)

Input:

int(1/(a+b*arcsin(c*x))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

2^(1/2)*Pi^(1/2)*(-1/b)^(1/2)*(cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^( 
1/2)*(a+b*arcsin(c*x))^(1/2)/b)-sin(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^ 
(1/2)*(a+b*arcsin(c*x))^(1/2)/b))/c
 

Fricas [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {a+b \arcsin (c x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(1/(a+b*arcsin(c*x))^(1/2),x, algorithm="fricas")
 

Output:

Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 

Sympy [F]

\[ \int \frac {1}{\sqrt {a+b \arcsin (c x)}} \, dx=\int \frac {1}{\sqrt {a + b \operatorname {asin}{\left (c x \right )}}}\, dx \] Input:

integrate(1/(a+b*asin(c*x))**(1/2),x)
 

Output:

Integral(1/sqrt(a + b*asin(c*x)), x)
 

Maxima [F]

\[ \int \frac {1}{\sqrt {a+b \arcsin (c x)}} \, dx=\int { \frac {1}{\sqrt {b \arcsin \left (c x\right ) + a}} \,d x } \] Input:

integrate(1/(a+b*arcsin(c*x))^(1/2),x, algorithm="maxima")
 

Output:

integrate(1/sqrt(b*arcsin(c*x) + a), x)
 

Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.19 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.57 \[ \int \frac {1}{\sqrt {a+b \arcsin (c x)}} \, dx=-\frac {\sqrt {\pi } \operatorname {erf}\left (-\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (\frac {i \, a}{b}\right )}}{c {\left (\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} - \frac {\sqrt {\pi } \operatorname {erf}\left (\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (-\frac {i \, a}{b}\right )}}{c {\left (-\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} \] Input:

integrate(1/(a+b*arcsin(c*x))^(1/2),x, algorithm="giac")
 

Output:

-sqrt(pi)*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sq 
rt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(I*a/b)/(c*(I*sqrt(2)*b/sq 
rt(abs(b)) + sqrt(2)*sqrt(abs(b)))) - sqrt(pi)*erf(1/2*I*sqrt(2)*sqrt(b*ar 
csin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs 
(b))/b)*e^(-I*a/b)/(c*(-I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b))))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+b \arcsin (c x)}} \, dx=\int \frac {1}{\sqrt {a+b\,\mathrm {asin}\left (c\,x\right )}} \,d x \] Input:

int(1/(a + b*asin(c*x))^(1/2),x)
 

Output:

int(1/(a + b*asin(c*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {a+b \arcsin (c x)}} \, dx=\int \frac {\sqrt {\mathit {asin} \left (c x \right ) b +a}}{\mathit {asin} \left (c x \right ) b +a}d x \] Input:

int(1/(a+b*asin(c*x))^(1/2),x)
 

Output:

int(sqrt(asin(c*x)*b + a)/(asin(c*x)*b + a),x)