\(\int \frac {(a+b \arcsin (c x))^2}{(d-c^2 d x^2)^{5/2}} \, dx\) [62]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 311 \[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\frac {b^2 x}{3 d^2 \sqrt {d-c^2 d x^2}}-\frac {b (a+b \arcsin (c x))}{3 c d^2 \sqrt {1-c^2 x^2} \sqrt {d-c^2 d x^2}}+\frac {x (a+b \arcsin (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {2 x (a+b \arcsin (c x))^2}{3 d^2 \sqrt {d-c^2 d x^2}}-\frac {2 i \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{3 c d^2 \sqrt {d-c^2 d x^2}}+\frac {4 b \sqrt {1-c^2 x^2} (a+b \arcsin (c x)) \log \left (1+e^{2 i \arcsin (c x)}\right )}{3 c d^2 \sqrt {d-c^2 d x^2}}-\frac {2 i b^2 \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,-e^{2 i \arcsin (c x)}\right )}{3 c d^2 \sqrt {d-c^2 d x^2}} \] Output:

1/3*b^2*x/d^2/(-c^2*d*x^2+d)^(1/2)-1/3*b*(a+b*arcsin(c*x))/c/d^2/(-c^2*x^2 
+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)+1/3*x*(a+b*arcsin(c*x))^2/d/(-c^2*d*x^2+d)^ 
(3/2)+2/3*x*(a+b*arcsin(c*x))^2/d^2/(-c^2*d*x^2+d)^(1/2)-2/3*I*(-c^2*x^2+1 
)^(1/2)*(a+b*arcsin(c*x))^2/c/d^2/(-c^2*d*x^2+d)^(1/2)+4/3*b*(-c^2*x^2+1)^ 
(1/2)*(a+b*arcsin(c*x))*ln(1+(I*c*x+(-c^2*x^2+1)^(1/2))^2)/c/d^2/(-c^2*d*x 
^2+d)^(1/2)-2/3*I*b^2*(-c^2*x^2+1)^(1/2)*polylog(2,-(I*c*x+(-c^2*x^2+1)^(1 
/2))^2)/c/d^2/(-c^2*d*x^2+d)^(1/2)
 

Mathematica [A] (verified)

Time = 0.95 (sec) , antiderivative size = 320, normalized size of antiderivative = 1.03 \[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\frac {-3 a^2 c x-b^2 c x+2 a^2 c^3 x^3+b^2 c^3 x^3+a b \sqrt {1-c^2 x^2}+b^2 \left (-3 c x+2 c^3 x^3+2 i \sqrt {1-c^2 x^2}-2 i c^2 x^2 \sqrt {1-c^2 x^2}\right ) \arcsin (c x)^2+b \arcsin (c x) \left (-6 a c x+4 a c^3 x^3+b \sqrt {1-c^2 x^2}-4 b \left (1-c^2 x^2\right )^{3/2} \log \left (1+e^{2 i \arcsin (c x)}\right )\right )-2 a b \sqrt {1-c^2 x^2} \log \left (1-c^2 x^2\right )+2 a b c^2 x^2 \sqrt {1-c^2 x^2} \log \left (1-c^2 x^2\right )+2 i b^2 \left (1-c^2 x^2\right )^{3/2} \operatorname {PolyLog}\left (2,-e^{2 i \arcsin (c x)}\right )}{3 c d^2 \left (-1+c^2 x^2\right ) \sqrt {d-c^2 d x^2}} \] Input:

Integrate[(a + b*ArcSin[c*x])^2/(d - c^2*d*x^2)^(5/2),x]
 

Output:

(-3*a^2*c*x - b^2*c*x + 2*a^2*c^3*x^3 + b^2*c^3*x^3 + a*b*Sqrt[1 - c^2*x^2 
] + b^2*(-3*c*x + 2*c^3*x^3 + (2*I)*Sqrt[1 - c^2*x^2] - (2*I)*c^2*x^2*Sqrt 
[1 - c^2*x^2])*ArcSin[c*x]^2 + b*ArcSin[c*x]*(-6*a*c*x + 4*a*c^3*x^3 + b*S 
qrt[1 - c^2*x^2] - 4*b*(1 - c^2*x^2)^(3/2)*Log[1 + E^((2*I)*ArcSin[c*x])]) 
 - 2*a*b*Sqrt[1 - c^2*x^2]*Log[1 - c^2*x^2] + 2*a*b*c^2*x^2*Sqrt[1 - c^2*x 
^2]*Log[1 - c^2*x^2] + (2*I)*b^2*(1 - c^2*x^2)^(3/2)*PolyLog[2, -E^((2*I)* 
ArcSin[c*x])])/(3*c*d^2*(-1 + c^2*x^2)*Sqrt[d - c^2*d*x^2])
 

Rubi [A] (verified)

Time = 1.41 (sec) , antiderivative size = 270, normalized size of antiderivative = 0.87, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {5162, 5160, 5180, 3042, 4202, 2620, 2715, 2838, 5182, 208}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 5162

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arcsin (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}}dx}{3 d}+\frac {x (a+b \arcsin (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 5160

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arcsin (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arcsin (c x))}{1-c^2 x^2}dx}{d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arcsin (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 5180

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arcsin (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \int \frac {c x (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}d\arcsin (c x)}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arcsin (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arcsin (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \int (a+b \arcsin (c x)) \tan (\arcsin (c x))d\arcsin (c x)}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arcsin (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 4202

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arcsin (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {i (a+b \arcsin (c x))^2}{2 b}-2 i \int \frac {e^{2 i \arcsin (c x)} (a+b \arcsin (c x))}{1+e^{2 i \arcsin (c x)}}d\arcsin (c x)\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arcsin (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 2620

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arcsin (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {i (a+b \arcsin (c x))^2}{2 b}-2 i \left (\frac {1}{2} i b \int \log \left (1+e^{2 i \arcsin (c x)}\right )d\arcsin (c x)-\frac {1}{2} i \log \left (1+e^{2 i \arcsin (c x)}\right ) (a+b \arcsin (c x))\right )\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arcsin (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 2715

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arcsin (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {i (a+b \arcsin (c x))^2}{2 b}-2 i \left (\frac {1}{4} b \int e^{-2 i \arcsin (c x)} \log \left (1+e^{2 i \arcsin (c x)}\right )de^{2 i \arcsin (c x)}-\frac {1}{2} i \log \left (1+e^{2 i \arcsin (c x)}\right ) (a+b \arcsin (c x))\right )\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arcsin (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 2838

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arcsin (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {i (a+b \arcsin (c x))^2}{2 b}-2 i \left (-\frac {1}{2} i \log \left (1+e^{2 i \arcsin (c x)}\right ) (a+b \arcsin (c x))-\frac {1}{4} b \operatorname {PolyLog}\left (2,-e^{2 i \arcsin (c x)}\right )\right )\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arcsin (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 5182

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \left (\frac {a+b \arcsin (c x)}{2 c^2 \left (1-c^2 x^2\right )}-\frac {b \int \frac {1}{\left (1-c^2 x^2\right )^{3/2}}dx}{2 c}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {i (a+b \arcsin (c x))^2}{2 b}-2 i \left (-\frac {1}{2} i \log \left (1+e^{2 i \arcsin (c x)}\right ) (a+b \arcsin (c x))-\frac {1}{4} b \operatorname {PolyLog}\left (2,-e^{2 i \arcsin (c x)}\right )\right )\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arcsin (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 208

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \left (\frac {a+b \arcsin (c x)}{2 c^2 \left (1-c^2 x^2\right )}-\frac {b x}{2 c \sqrt {1-c^2 x^2}}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {i (a+b \arcsin (c x))^2}{2 b}-2 i \left (-\frac {1}{2} i \log \left (1+e^{2 i \arcsin (c x)}\right ) (a+b \arcsin (c x))-\frac {1}{4} b \operatorname {PolyLog}\left (2,-e^{2 i \arcsin (c x)}\right )\right )\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arcsin (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\)

Input:

Int[(a + b*ArcSin[c*x])^2/(d - c^2*d*x^2)^(5/2),x]
 

Output:

(x*(a + b*ArcSin[c*x])^2)/(3*d*(d - c^2*d*x^2)^(3/2)) - (2*b*c*Sqrt[1 - c^ 
2*x^2]*(-1/2*(b*x)/(c*Sqrt[1 - c^2*x^2]) + (a + b*ArcSin[c*x])/(2*c^2*(1 - 
 c^2*x^2))))/(3*d^2*Sqrt[d - c^2*d*x^2]) + (2*((x*(a + b*ArcSin[c*x])^2)/( 
d*Sqrt[d - c^2*d*x^2]) - (2*b*Sqrt[1 - c^2*x^2]*(((I/2)*(a + b*ArcSin[c*x] 
)^2)/b - (2*I)*((-1/2*I)*(a + b*ArcSin[c*x])*Log[1 + E^((2*I)*ArcSin[c*x]) 
] - (b*PolyLog[2, -E^((2*I)*ArcSin[c*x])])/4)))/(c*d*Sqrt[d - c^2*d*x^2])) 
)/(3*d)
 

Defintions of rubi rules used

rule 208
Int[((a_) + (b_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[x/(a*Sqrt[a + b*x^2]), 
x] /; FreeQ[{a, b}, x]
 

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4202
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[I 
*((c + d*x)^(m + 1)/(d*(m + 1))), x] - Simp[2*I   Int[(c + d*x)^m*(E^(2*I*( 
e + f*x))/(1 + E^(2*I*(e + f*x)))), x], x] /; FreeQ[{c, d, e, f}, x] && IGt 
Q[m, 0]
 

rule 5160
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2)^(3/2), x 
_Symbol] :> Simp[x*((a + b*ArcSin[c*x])^n/(d*Sqrt[d + e*x^2])), x] - Simp[b 
*c*(n/d)*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]   Int[x*((a + b*ArcSin[c*x 
])^(n - 1)/(1 - c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d 
 + e, 0] && GtQ[n, 0]
 

rule 5162
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x_ 
Symbol] :> Simp[(-x)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(2*d*(p + 1 
))), x] + (Simp[(2*p + 3)/(2*d*(p + 1))   Int[(d + e*x^2)^(p + 1)*(a + b*Ar 
cSin[c*x])^n, x], x] + Simp[b*c*(n/(2*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2 
*x^2)^p]   Int[x*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x 
]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, 
 -1] && NeQ[p, -3/2]
 

rule 5180
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), 
x_Symbol] :> Simp[-e^(-1)   Subst[Int[(a + b*x)^n*Tan[x], x], x, ArcSin[c*x 
]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]
 

rule 5182
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_ 
.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 
1))), x] + Simp[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   I 
nt[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, 
 b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 2894 vs. \(2 (293 ) = 586\).

Time = 0.25 (sec) , antiderivative size = 2895, normalized size of antiderivative = 9.31

method result size
default \(\text {Expression too large to display}\) \(2895\)
parts \(\text {Expression too large to display}\) \(2895\)

Input:

int((a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

14/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)* 
c*(-c^2*x^2+1)^(1/2)*arcsin(c*x)^2*x^2-10/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/d 
^3/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c^2*(-c^2*x^2+1)*arcsin(c*x)*x^3+4/ 
3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c^4 
*(-c^2*x^2+1)*arcsin(c*x)*x^5-2*I*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^6*x^ 
6-10*c^4*x^4+11*c^2*x^2-4)*c^3*(-c^2*x^2+1)^(1/2)*arcsin(c*x)^2*x^4+a^2*(1 
/3*x/d/(-c^2*d*x^2+d)^(3/2)+2/3/d^2*x/(-c^2*d*x^2+d)^(1/2))+2/3*b^2*(-d*(c 
^2*x^2-1))^(1/2)/d^3/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c^4*(-c^2*x^2+1)* 
x^5-4/3*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4) 
*c^2*(-c^2*x^2+1)*x^3-2*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^6*x^6-10*c^4*x 
^4+11*c^2*x^2-4)*c^4*arcsin(c*x)^2*x^5+17/3*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3 
/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c^2*arcsin(c*x)^2*x^3+4/3*b^2*(-d*(c^ 
2*x^2-1))^(1/2)/d^3/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)/c*(-c^2*x^2+1)^(1/ 
2)*arcsin(c*x)-2*I*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^6*x^6-10*c^4*x^4+11 
*c^2*x^2-4)*arcsin(c*x)*x-4/3*I*b^2*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^6*x^6- 
10*c^4*x^4+11*c^2*x^2-4)/c*(-c^2*x^2+1)^(1/2)-2*b^2*(-d*(c^2*x^2-1))^(1/2) 
/d^3/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*x+16/3*I*a*b*(-d*(c^2*x^2-1))^(1/ 
2)/d^3/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c^2*x^3-a*b*(-d*(c^2*x^2-1))^(1 
/2)/d^3/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c*(-c^2*x^2+1)^(1/2)*x^2-4*a*b 
*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c^4*arc...
 

Fricas [F]

\[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(5/2),x, algorithm="fricas")
 

Output:

integral(-sqrt(-c^2*d*x^2 + d)*(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^ 
2)/(c^6*d^3*x^6 - 3*c^4*d^3*x^4 + 3*c^2*d^3*x^2 - d^3), x)
 

Sympy [F]

\[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int \frac {\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {5}{2}}}\, dx \] Input:

integrate((a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(5/2),x)
 

Output:

Integral((a + b*asin(c*x))**2/(-d*(c*x - 1)*(c*x + 1))**(5/2), x)
 

Maxima [F]

\[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(5/2),x, algorithm="maxima")
 

Output:

1/3*a*b*c*(1/(c^4*d^(5/2)*x^2 - c^2*d^(5/2)) + 2*log(c*x + 1)/(c^2*d^(5/2) 
) + 2*log(c*x - 1)/(c^2*d^(5/2))) + 2/3*a*b*(2*x/(sqrt(-c^2*d*x^2 + d)*d^2 
) + x/((-c^2*d*x^2 + d)^(3/2)*d))*arcsin(c*x) + 1/3*a^2*(2*x/(sqrt(-c^2*d* 
x^2 + d)*d^2) + x/((-c^2*d*x^2 + d)^(3/2)*d)) + b^2*integrate(arctan2(c*x, 
 sqrt(c*x + 1)*sqrt(-c*x + 1))^2/((c^4*d^2*x^4 - 2*c^2*d^2*x^2 + d^2)*sqrt 
(c*x + 1)*sqrt(-c*x + 1)), x)/sqrt(d)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(5/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\int \frac {{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{{\left (d-c^2\,d\,x^2\right )}^{5/2}} \,d x \] Input:

int((a + b*asin(c*x))^2/(d - c^2*d*x^2)^(5/2),x)
 

Output:

int((a + b*asin(c*x))^2/(d - c^2*d*x^2)^(5/2), x)
 

Reduce [F]

\[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{5/2}} \, dx=\frac {6 \sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {asin} \left (c x \right )}{\sqrt {-c^{2} x^{2}+1}\, c^{4} x^{4}-2 \sqrt {-c^{2} x^{2}+1}\, c^{2} x^{2}+\sqrt {-c^{2} x^{2}+1}}d x \right ) a b \,c^{2} x^{2}-6 \sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {asin} \left (c x \right )}{\sqrt {-c^{2} x^{2}+1}\, c^{4} x^{4}-2 \sqrt {-c^{2} x^{2}+1}\, c^{2} x^{2}+\sqrt {-c^{2} x^{2}+1}}d x \right ) a b +3 \sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {asin} \left (c x \right )^{2}}{\sqrt {-c^{2} x^{2}+1}\, c^{4} x^{4}-2 \sqrt {-c^{2} x^{2}+1}\, c^{2} x^{2}+\sqrt {-c^{2} x^{2}+1}}d x \right ) b^{2} c^{2} x^{2}-3 \sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {asin} \left (c x \right )^{2}}{\sqrt {-c^{2} x^{2}+1}\, c^{4} x^{4}-2 \sqrt {-c^{2} x^{2}+1}\, c^{2} x^{2}+\sqrt {-c^{2} x^{2}+1}}d x \right ) b^{2}+2 a^{2} c^{2} x^{3}-3 a^{2} x}{3 \sqrt {d}\, \sqrt {-c^{2} x^{2}+1}\, d^{2} \left (c^{2} x^{2}-1\right )} \] Input:

int((a+b*asin(c*x))^2/(-c^2*d*x^2+d)^(5/2),x)
 

Output:

(6*sqrt( - c**2*x**2 + 1)*int(asin(c*x)/(sqrt( - c**2*x**2 + 1)*c**4*x**4 
- 2*sqrt( - c**2*x**2 + 1)*c**2*x**2 + sqrt( - c**2*x**2 + 1)),x)*a*b*c**2 
*x**2 - 6*sqrt( - c**2*x**2 + 1)*int(asin(c*x)/(sqrt( - c**2*x**2 + 1)*c** 
4*x**4 - 2*sqrt( - c**2*x**2 + 1)*c**2*x**2 + sqrt( - c**2*x**2 + 1)),x)*a 
*b + 3*sqrt( - c**2*x**2 + 1)*int(asin(c*x)**2/(sqrt( - c**2*x**2 + 1)*c** 
4*x**4 - 2*sqrt( - c**2*x**2 + 1)*c**2*x**2 + sqrt( - c**2*x**2 + 1)),x)*b 
**2*c**2*x**2 - 3*sqrt( - c**2*x**2 + 1)*int(asin(c*x)**2/(sqrt( - c**2*x* 
*2 + 1)*c**4*x**4 - 2*sqrt( - c**2*x**2 + 1)*c**2*x**2 + sqrt( - c**2*x**2 
 + 1)),x)*b**2 + 2*a**2*c**2*x**3 - 3*a**2*x)/(3*sqrt(d)*sqrt( - c**2*x**2 
 + 1)*d**2*(c**2*x**2 - 1))