\(\int \frac {x^3 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx\) [233]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 29, antiderivative size = 224 \[ \int \frac {x^3 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\frac {14 b^2 \sqrt {d-c^2 d x^2}}{9 c^4 d}-\frac {2 b^2 \left (d-c^2 d x^2\right )^{3/2}}{27 c^4 d^2}+\frac {4 b x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{3 c^3 \sqrt {d-c^2 d x^2}}+\frac {2 b x^3 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{9 c \sqrt {d-c^2 d x^2}}-\frac {2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 c^4 d}-\frac {x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 c^2 d} \] Output:

14/9*b^2*(-c^2*d*x^2+d)^(1/2)/c^4/d-2/27*b^2*(-c^2*d*x^2+d)^(3/2)/c^4/d^2+ 
4/3*b*x*(-c^2*x^2+1)^(1/2)*(a+b*arcsin(c*x))/c^3/(-c^2*d*x^2+d)^(1/2)+2/9* 
b*x^3*(-c^2*x^2+1)^(1/2)*(a+b*arcsin(c*x))/c/(-c^2*d*x^2+d)^(1/2)-2/3*(-c^ 
2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2/c^4/d-1/3*x^2*(-c^2*d*x^2+d)^(1/2)*(a 
+b*arcsin(c*x))^2/c^2/d
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 176, normalized size of antiderivative = 0.79 \[ \int \frac {x^3 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\frac {6 a b c x \sqrt {1-c^2 x^2} \left (6+c^2 x^2\right )+9 a^2 \left (-2+c^2 x^2+c^4 x^4\right )-2 b^2 \left (-20+19 c^2 x^2+c^4 x^4\right )+6 b \left (b c x \sqrt {1-c^2 x^2} \left (6+c^2 x^2\right )+3 a \left (-2+c^2 x^2+c^4 x^4\right )\right ) \arcsin (c x)+9 b^2 \left (-2+c^2 x^2+c^4 x^4\right ) \arcsin (c x)^2}{27 c^4 \sqrt {d-c^2 d x^2}} \] Input:

Integrate[(x^3*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]
 

Output:

(6*a*b*c*x*Sqrt[1 - c^2*x^2]*(6 + c^2*x^2) + 9*a^2*(-2 + c^2*x^2 + c^4*x^4 
) - 2*b^2*(-20 + 19*c^2*x^2 + c^4*x^4) + 6*b*(b*c*x*Sqrt[1 - c^2*x^2]*(6 + 
 c^2*x^2) + 3*a*(-2 + c^2*x^2 + c^4*x^4))*ArcSin[c*x] + 9*b^2*(-2 + c^2*x^ 
2 + c^4*x^4)*ArcSin[c*x]^2)/(27*c^4*Sqrt[d - c^2*d*x^2])
 

Rubi [A] (verified)

Time = 1.32 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.09, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.241, Rules used = {5210, 5138, 243, 53, 2009, 5182, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx\)

\(\Big \downarrow \) 5210

\(\displaystyle \frac {2 b \sqrt {1-c^2 x^2} \int x^2 (a+b \arcsin (c x))dx}{3 c \sqrt {d-c^2 d x^2}}+\frac {2 \int \frac {x (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}}dx}{3 c^2}-\frac {x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 c^2 d}\)

\(\Big \downarrow \) 5138

\(\displaystyle \frac {2 \int \frac {x (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}}dx}{3 c^2}+\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {1}{3} x^3 (a+b \arcsin (c x))-\frac {1}{3} b c \int \frac {x^3}{\sqrt {1-c^2 x^2}}dx\right )}{3 c \sqrt {d-c^2 d x^2}}-\frac {x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 c^2 d}\)

\(\Big \downarrow \) 243

\(\displaystyle \frac {2 \int \frac {x (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}}dx}{3 c^2}+\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {1}{3} x^3 (a+b \arcsin (c x))-\frac {1}{6} b c \int \frac {x^2}{\sqrt {1-c^2 x^2}}dx^2\right )}{3 c \sqrt {d-c^2 d x^2}}-\frac {x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 c^2 d}\)

\(\Big \downarrow \) 53

\(\displaystyle \frac {2 \int \frac {x (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}}dx}{3 c^2}+\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {1}{3} x^3 (a+b \arcsin (c x))-\frac {1}{6} b c \int \left (\frac {1}{c^2 \sqrt {1-c^2 x^2}}-\frac {\sqrt {1-c^2 x^2}}{c^2}\right )dx^2\right )}{3 c \sqrt {d-c^2 d x^2}}-\frac {x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 c^2 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 \int \frac {x (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}}dx}{3 c^2}-\frac {x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 c^2 d}+\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {1}{3} x^3 (a+b \arcsin (c x))-\frac {1}{6} b c \left (\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^4}-\frac {2 \sqrt {1-c^2 x^2}}{c^4}\right )\right )}{3 c \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 5182

\(\displaystyle \frac {2 \left (\frac {2 b \sqrt {1-c^2 x^2} \int (a+b \arcsin (c x))dx}{c \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{c^2 d}\right )}{3 c^2}-\frac {x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 c^2 d}+\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {1}{3} x^3 (a+b \arcsin (c x))-\frac {1}{6} b c \left (\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^4}-\frac {2 \sqrt {1-c^2 x^2}}{c^4}\right )\right )}{3 c \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{3 c^2 d}+\frac {2 \left (\frac {2 b \sqrt {1-c^2 x^2} \left (a x+b x \arcsin (c x)+\frac {b \sqrt {1-c^2 x^2}}{c}\right )}{c \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{c^2 d}\right )}{3 c^2}+\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {1}{3} x^3 (a+b \arcsin (c x))-\frac {1}{6} b c \left (\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^4}-\frac {2 \sqrt {1-c^2 x^2}}{c^4}\right )\right )}{3 c \sqrt {d-c^2 d x^2}}\)

Input:

Int[(x^3*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]
 

Output:

-1/3*(x^2*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/(c^2*d) + (2*b*Sqrt[1 
 - c^2*x^2]*(-1/6*(b*c*((-2*Sqrt[1 - c^2*x^2])/c^4 + (2*(1 - c^2*x^2)^(3/2 
))/(3*c^4))) + (x^3*(a + b*ArcSin[c*x]))/3))/(3*c*Sqrt[d - c^2*d*x^2]) + ( 
2*(-((Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/(c^2*d)) + (2*b*Sqrt[1 - 
c^2*x^2]*(a*x + (b*Sqrt[1 - c^2*x^2])/c + b*x*ArcSin[c*x]))/(c*Sqrt[d - c^ 
2*d*x^2])))/(3*c^2)
 

Defintions of rubi rules used

rule 53
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, 
x] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0] && LeQ[7*m + 4*n + 4, 0]) 
|| LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5138
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] 
:> Simp[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^n/(d*(m + 1))), x] - Simp[b*c*(n 
/(d*(m + 1)))   Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2 
*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
 

rule 5182
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_ 
.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 
1))), x] + Simp[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   I 
nt[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, 
 b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]
 

rule 5210
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + 
 b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Simp[f^2*((m - 1)/(c^2*(m + 2*p 
 + 1)))   Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + S 
imp[b*f*(n/(c*(m + 2*p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f* 
x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; 
FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m 
, 1] && NeQ[m + 2*p + 1, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(478\) vs. \(2(196)=392\).

Time = 0.75 (sec) , antiderivative size = 479, normalized size of antiderivative = 2.14

method result size
orering \(\frac {\left (19 c^{6} x^{6}+100 c^{4} x^{4}-380 c^{2} x^{2}+240\right ) \left (a +b \arcsin \left (c x \right )\right )^{2}}{27 c^{6} x^{2} \sqrt {-c^{2} d \,x^{2}+d}}-\frac {2 \left (c x -1\right ) \left (c x +1\right ) \left (c^{4} x^{4}+12 c^{2} x^{2}-20\right ) \left (\frac {3 x^{2} \left (a +b \arcsin \left (c x \right )\right )^{2}}{\sqrt {-c^{2} d \,x^{2}+d}}+\frac {2 x^{3} \left (a +b \arcsin \left (c x \right )\right ) b c}{\sqrt {-c^{2} d \,x^{2}+d}\, \sqrt {-c^{2} x^{2}+1}}+\frac {x^{4} \left (a +b \arcsin \left (c x \right )\right )^{2} c^{2} d}{\left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}\right )}{9 c^{6} x^{4}}+\frac {\left (c^{2} x^{2}+20\right ) \left (c x -1\right )^{2} \left (c x +1\right )^{2} \left (\frac {6 x \left (a +b \arcsin \left (c x \right )\right )^{2}}{\sqrt {-c^{2} d \,x^{2}+d}}+\frac {12 x^{2} \left (a +b \arcsin \left (c x \right )\right ) b c}{\sqrt {-c^{2} d \,x^{2}+d}\, \sqrt {-c^{2} x^{2}+1}}+\frac {7 x^{3} \left (a +b \arcsin \left (c x \right )\right )^{2} c^{2} d}{\left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}+\frac {2 x^{3} b^{2} c^{2}}{\left (-c^{2} x^{2}+1\right ) \sqrt {-c^{2} d \,x^{2}+d}}+\frac {4 x^{4} \left (a +b \arcsin \left (c x \right )\right ) b \,c^{3} d}{\left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}} \sqrt {-c^{2} x^{2}+1}}+\frac {2 x^{4} \left (a +b \arcsin \left (c x \right )\right ) b \,c^{3}}{\sqrt {-c^{2} d \,x^{2}+d}\, \left (-c^{2} x^{2}+1\right )^{\frac {3}{2}}}+\frac {3 x^{5} \left (a +b \arcsin \left (c x \right )\right )^{2} c^{4} d^{2}}{\left (-c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}\right )}{27 c^{6} x^{3}}\) \(479\)
default \(a^{2} \left (-\frac {x^{2} \sqrt {-c^{2} d \,x^{2}+d}}{3 c^{2} d}-\frac {2 \sqrt {-c^{2} d \,x^{2}+d}}{3 d \,c^{4}}\right )+b^{2} \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-2 i \sqrt {-c^{2} x^{2}+1}\, c x +2 c^{2} x^{2}-1\right ) \left (6 i \arcsin \left (c x \right )+9 \arcsin \left (c x \right )^{2}-2\right )}{432 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i \sqrt {-c^{2} x^{2}+1}\, c x -1\right ) \left (\arcsin \left (c x \right )^{2}-2+2 i \arcsin \left (c x \right )\right )}{8 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, c x +c^{2} x^{2}-1\right ) \left (\arcsin \left (c x \right )^{2}-2-2 i \arcsin \left (c x \right )\right )}{8 c^{4} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 i \sqrt {-c^{2} x^{2}+1}\, c x +2 c^{2} x^{2}-1\right ) \left (-6 i \arcsin \left (c x \right )+9 \arcsin \left (c x \right )^{2}-2\right )}{432 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (9 \arcsin \left (c x \right )^{2}-2\right ) \cos \left (4 \arcsin \left (c x \right )\right )}{216 c^{4} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \sin \left (4 \arcsin \left (c x \right )\right )}{36 c^{4} d \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-2 i \sqrt {-c^{2} x^{2}+1}\, c x +2 c^{2} x^{2}-1\right ) \left (i+3 \arcsin \left (c x \right )\right )}{144 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i \sqrt {-c^{2} x^{2}+1}\, c x -1\right ) \left (\arcsin \left (c x \right )+i\right )}{8 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, c x +c^{2} x^{2}-1\right ) \left (\arcsin \left (c x \right )-i\right )}{8 c^{4} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 i \sqrt {-c^{2} x^{2}+1}\, c x +2 c^{2} x^{2}-1\right ) \left (-i+3 \arcsin \left (c x \right )\right )}{144 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \cos \left (4 \arcsin \left (c x \right )\right )}{24 c^{4} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sin \left (4 \arcsin \left (c x \right )\right )}{72 c^{4} d \left (c^{2} x^{2}-1\right )}\right )\) \(812\)
parts \(a^{2} \left (-\frac {x^{2} \sqrt {-c^{2} d \,x^{2}+d}}{3 c^{2} d}-\frac {2 \sqrt {-c^{2} d \,x^{2}+d}}{3 d \,c^{4}}\right )+b^{2} \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-2 i \sqrt {-c^{2} x^{2}+1}\, c x +2 c^{2} x^{2}-1\right ) \left (6 i \arcsin \left (c x \right )+9 \arcsin \left (c x \right )^{2}-2\right )}{432 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i \sqrt {-c^{2} x^{2}+1}\, c x -1\right ) \left (\arcsin \left (c x \right )^{2}-2+2 i \arcsin \left (c x \right )\right )}{8 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, c x +c^{2} x^{2}-1\right ) \left (\arcsin \left (c x \right )^{2}-2-2 i \arcsin \left (c x \right )\right )}{8 c^{4} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 i \sqrt {-c^{2} x^{2}+1}\, c x +2 c^{2} x^{2}-1\right ) \left (-6 i \arcsin \left (c x \right )+9 \arcsin \left (c x \right )^{2}-2\right )}{432 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (9 \arcsin \left (c x \right )^{2}-2\right ) \cos \left (4 \arcsin \left (c x \right )\right )}{216 c^{4} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \sin \left (4 \arcsin \left (c x \right )\right )}{36 c^{4} d \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-2 i \sqrt {-c^{2} x^{2}+1}\, c x +2 c^{2} x^{2}-1\right ) \left (i+3 \arcsin \left (c x \right )\right )}{144 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i \sqrt {-c^{2} x^{2}+1}\, c x -1\right ) \left (\arcsin \left (c x \right )+i\right )}{8 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, c x +c^{2} x^{2}-1\right ) \left (\arcsin \left (c x \right )-i\right )}{8 c^{4} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 i \sqrt {-c^{2} x^{2}+1}\, c x +2 c^{2} x^{2}-1\right ) \left (-i+3 \arcsin \left (c x \right )\right )}{144 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \cos \left (4 \arcsin \left (c x \right )\right )}{24 c^{4} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sin \left (4 \arcsin \left (c x \right )\right )}{72 c^{4} d \left (c^{2} x^{2}-1\right )}\right )\) \(812\)

Input:

int(x^3*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/27*(19*c^6*x^6+100*c^4*x^4-380*c^2*x^2+240)/c^6/x^2*(a+b*arcsin(c*x))^2/ 
(-c^2*d*x^2+d)^(1/2)-2/9*(c*x-1)*(c*x+1)*(c^4*x^4+12*c^2*x^2-20)/c^6/x^4*( 
3*x^2*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2)+2*x^3*(a+b*arcsin(c*x))/(-c 
^2*d*x^2+d)^(1/2)*b*c/(-c^2*x^2+1)^(1/2)+x^4*(a+b*arcsin(c*x))^2/(-c^2*d*x 
^2+d)^(3/2)*c^2*d)+1/27*(c^2*x^2+20)/c^6*(c*x-1)^2/x^3*(c*x+1)^2*(6*x*(a+b 
*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2)+12*x^2*(a+b*arcsin(c*x))/(-c^2*d*x^2+ 
d)^(1/2)*b*c/(-c^2*x^2+1)^(1/2)+7*x^3*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^( 
3/2)*c^2*d+2*x^3*b^2*c^2/(-c^2*x^2+1)/(-c^2*d*x^2+d)^(1/2)+4*x^4*(a+b*arcs 
in(c*x))/(-c^2*d*x^2+d)^(3/2)*b*c^3/(-c^2*x^2+1)^(1/2)*d+2*x^4*(a+b*arcsin 
(c*x))/(-c^2*d*x^2+d)^(1/2)*b*c^3/(-c^2*x^2+1)^(3/2)+3*x^5*(a+b*arcsin(c*x 
))^2/(-c^2*d*x^2+d)^(5/2)*c^4*d^2)
 

Fricas [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 210, normalized size of antiderivative = 0.94 \[ \int \frac {x^3 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=-\frac {6 \, {\left (a b c^{3} x^{3} + 6 \, a b c x + {\left (b^{2} c^{3} x^{3} + 6 \, b^{2} c x\right )} \arcsin \left (c x\right )\right )} \sqrt {-c^{2} d x^{2} + d} \sqrt {-c^{2} x^{2} + 1} + {\left ({\left (9 \, a^{2} - 2 \, b^{2}\right )} c^{4} x^{4} + {\left (9 \, a^{2} - 38 \, b^{2}\right )} c^{2} x^{2} + 9 \, {\left (b^{2} c^{4} x^{4} + b^{2} c^{2} x^{2} - 2 \, b^{2}\right )} \arcsin \left (c x\right )^{2} - 18 \, a^{2} + 40 \, b^{2} + 18 \, {\left (a b c^{4} x^{4} + a b c^{2} x^{2} - 2 \, a b\right )} \arcsin \left (c x\right )\right )} \sqrt {-c^{2} d x^{2} + d}}{27 \, {\left (c^{6} d x^{2} - c^{4} d\right )}} \] Input:

integrate(x^3*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="frica 
s")
 

Output:

-1/27*(6*(a*b*c^3*x^3 + 6*a*b*c*x + (b^2*c^3*x^3 + 6*b^2*c*x)*arcsin(c*x)) 
*sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^2 + 1) + ((9*a^2 - 2*b^2)*c^4*x^4 + (9*a 
^2 - 38*b^2)*c^2*x^2 + 9*(b^2*c^4*x^4 + b^2*c^2*x^2 - 2*b^2)*arcsin(c*x)^2 
 - 18*a^2 + 40*b^2 + 18*(a*b*c^4*x^4 + a*b*c^2*x^2 - 2*a*b)*arcsin(c*x))*s 
qrt(-c^2*d*x^2 + d))/(c^6*d*x^2 - c^4*d)
 

Sympy [F]

\[ \int \frac {x^3 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\int \frac {x^{3} \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \] Input:

integrate(x**3*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(1/2),x)
 

Output:

Integral(x**3*(a + b*asin(c*x))**2/sqrt(-d*(c*x - 1)*(c*x + 1)), x)
 

Maxima [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.12 \[ \int \frac {x^3 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=-\frac {1}{3} \, b^{2} {\left (\frac {\sqrt {-c^{2} d x^{2} + d} x^{2}}{c^{2} d} + \frac {2 \, \sqrt {-c^{2} d x^{2} + d}}{c^{4} d}\right )} \arcsin \left (c x\right )^{2} - \frac {2}{3} \, a b {\left (\frac {\sqrt {-c^{2} d x^{2} + d} x^{2}}{c^{2} d} + \frac {2 \, \sqrt {-c^{2} d x^{2} + d}}{c^{4} d}\right )} \arcsin \left (c x\right ) - \frac {1}{3} \, a^{2} {\left (\frac {\sqrt {-c^{2} d x^{2} + d} x^{2}}{c^{2} d} + \frac {2 \, \sqrt {-c^{2} d x^{2} + d}}{c^{4} d}\right )} + \frac {2}{27} \, b^{2} {\left (\frac {\sqrt {-c^{2} x^{2} + 1} x^{2} + \frac {20 \, \sqrt {-c^{2} x^{2} + 1}}{c^{2}}}{c^{2} \sqrt {d}} + \frac {3 \, {\left (c^{2} x^{3} + 6 \, x\right )} \arcsin \left (c x\right )}{c^{3} \sqrt {d}}\right )} + \frac {2 \, {\left (c^{2} x^{3} + 6 \, x\right )} a b}{9 \, c^{3} \sqrt {d}} \] Input:

integrate(x^3*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxim 
a")
 

Output:

-1/3*b^2*(sqrt(-c^2*d*x^2 + d)*x^2/(c^2*d) + 2*sqrt(-c^2*d*x^2 + d)/(c^4*d 
))*arcsin(c*x)^2 - 2/3*a*b*(sqrt(-c^2*d*x^2 + d)*x^2/(c^2*d) + 2*sqrt(-c^2 
*d*x^2 + d)/(c^4*d))*arcsin(c*x) - 1/3*a^2*(sqrt(-c^2*d*x^2 + d)*x^2/(c^2* 
d) + 2*sqrt(-c^2*d*x^2 + d)/(c^4*d)) + 2/27*b^2*((sqrt(-c^2*x^2 + 1)*x^2 + 
 20*sqrt(-c^2*x^2 + 1)/c^2)/(c^2*sqrt(d)) + 3*(c^2*x^3 + 6*x)*arcsin(c*x)/ 
(c^3*sqrt(d))) + 2/9*(c^2*x^3 + 6*x)*a*b/(c^3*sqrt(d))
 

Giac [F(-2)]

Exception generated. \[ \int \frac {x^3 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^3*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac" 
)
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\int \frac {x^3\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{\sqrt {d-c^2\,d\,x^2}} \,d x \] Input:

int((x^3*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(1/2),x)
 

Output:

int((x^3*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(1/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {x^3 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\frac {-\sqrt {-c^{2} x^{2}+1}\, a^{2} c^{2} x^{2}-2 \sqrt {-c^{2} x^{2}+1}\, a^{2}+6 \left (\int \frac {\mathit {asin} \left (c x \right ) x^{3}}{\sqrt {-c^{2} x^{2}+1}}d x \right ) a b \,c^{4}+3 \left (\int \frac {\mathit {asin} \left (c x \right )^{2} x^{3}}{\sqrt {-c^{2} x^{2}+1}}d x \right ) b^{2} c^{4}}{3 \sqrt {d}\, c^{4}} \] Input:

int(x^3*(a+b*asin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x)
 

Output:

( - sqrt( - c**2*x**2 + 1)*a**2*c**2*x**2 - 2*sqrt( - c**2*x**2 + 1)*a**2 
+ 6*int((asin(c*x)*x**3)/sqrt( - c**2*x**2 + 1),x)*a*b*c**4 + 3*int((asin( 
c*x)**2*x**3)/sqrt( - c**2*x**2 + 1),x)*b**2*c**4)/(3*sqrt(d)*c**4)