\(\int x^m (d-c^2 d x^2)^2 (a+b \arcsin (c x))^2 \, dx\) [270]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 756 \[ \int x^m \left (d-c^2 d x^2\right )^2 (a+b \arcsin (c x))^2 \, dx=\frac {6 b^2 c^2 d^2 x^{3+m}}{(3+m)^2 (5+m)^2}+\frac {2 b^2 c^2 d^2 x^{3+m}}{(3+m) (5+m)^2}+\frac {8 b^2 c^2 d^2 x^{3+m}}{(3+m)^3 (5+m)}-\frac {2 b^2 c^4 d^2 x^{5+m}}{(5+m)^3}-\frac {6 b c d^2 x^{2+m} \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{(3+m) (5+m)^2}-\frac {8 b c d^2 x^{2+m} \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{(3+m)^2 (5+m)}-\frac {2 b c d^2 x^{2+m} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))}{(5+m)^2}+\frac {8 d^2 x^{1+m} (a+b \arcsin (c x))^2}{(5+m) \left (3+4 m+m^2\right )}+\frac {4 d^2 x^{1+m} \left (1-c^2 x^2\right ) (a+b \arcsin (c x))^2}{15+8 m+m^2}+\frac {d^2 x^{1+m} \left (1-c^2 x^2\right )^2 (a+b \arcsin (c x))^2}{5+m}-\frac {8 b c d^2 x^{2+m} (a+b \arcsin (c x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2+m}{2},\frac {4+m}{2},c^2 x^2\right )}{(2+m) (3+m)^2 (5+m)}-\frac {6 b c d^2 x^{2+m} (a+b \arcsin (c x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2+m}{2},\frac {4+m}{2},c^2 x^2\right )}{(5+m)^2 \left (6+5 m+m^2\right )}-\frac {16 b c d^2 x^{2+m} (a+b \arcsin (c x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2+m}{2},\frac {4+m}{2},c^2 x^2\right )}{(5+m) \left (6+11 m+6 m^2+m^3\right )}+\frac {6 b^2 c^2 d^2 x^{3+m} \, _3F_2\left (1,\frac {3}{2}+\frac {m}{2},\frac {3}{2}+\frac {m}{2};2+\frac {m}{2},\frac {5}{2}+\frac {m}{2};c^2 x^2\right )}{(2+m) (3+m)^2 (5+m)^2}+\frac {8 b^2 c^2 d^2 x^{3+m} \, _3F_2\left (1,\frac {3}{2}+\frac {m}{2},\frac {3}{2}+\frac {m}{2};2+\frac {m}{2},\frac {5}{2}+\frac {m}{2};c^2 x^2\right )}{(2+m) (3+m)^3 (5+m)}+\frac {16 b^2 c^2 d^2 x^{3+m} \, _3F_2\left (1,\frac {3}{2}+\frac {m}{2},\frac {3}{2}+\frac {m}{2};2+\frac {m}{2},\frac {5}{2}+\frac {m}{2};c^2 x^2\right )}{(3+m)^2 (5+m) \left (2+3 m+m^2\right )} \] Output:

6*b^2*c^2*d^2*x^(3+m)/(3+m)^2/(5+m)^2+2*b^2*c^2*d^2*x^(3+m)/(3+m)/(5+m)^2+ 
8*b^2*c^2*d^2*x^(3+m)/(3+m)^3/(5+m)-2*b^2*c^4*d^2*x^(5+m)/(5+m)^3-6*b*c*d^ 
2*x^(2+m)*(-c^2*x^2+1)^(1/2)*(a+b*arcsin(c*x))/(3+m)/(5+m)^2-8*b*c*d^2*x^( 
2+m)*(-c^2*x^2+1)^(1/2)*(a+b*arcsin(c*x))/(3+m)^2/(5+m)-2*b*c*d^2*x^(2+m)* 
(-c^2*x^2+1)^(3/2)*(a+b*arcsin(c*x))/(5+m)^2+8*d^2*x^(1+m)*(a+b*arcsin(c*x 
))^2/(5+m)/(m^2+4*m+3)+4*d^2*x^(1+m)*(-c^2*x^2+1)*(a+b*arcsin(c*x))^2/(m^2 
+8*m+15)+d^2*x^(1+m)*(-c^2*x^2+1)^2*(a+b*arcsin(c*x))^2/(5+m)-8*b*c*d^2*x^ 
(2+m)*(a+b*arcsin(c*x))*hypergeom([1/2, 1+1/2*m],[2+1/2*m],c^2*x^2)/(2+m)/ 
(3+m)^2/(5+m)-6*b*c*d^2*x^(2+m)*(a+b*arcsin(c*x))*hypergeom([1/2, 1+1/2*m] 
,[2+1/2*m],c^2*x^2)/(5+m)^2/(m^2+5*m+6)-16*b*c*d^2*x^(2+m)*(a+b*arcsin(c*x 
))*hypergeom([1/2, 1+1/2*m],[2+1/2*m],c^2*x^2)/(5+m)/(m^3+6*m^2+11*m+6)+6* 
b^2*c^2*d^2*x^(3+m)*hypergeom([1, 3/2+1/2*m, 3/2+1/2*m],[2+1/2*m, 5/2+1/2* 
m],c^2*x^2)/(2+m)/(3+m)^2/(5+m)^2+8*b^2*c^2*d^2*x^(3+m)*hypergeom([1, 3/2+ 
1/2*m, 3/2+1/2*m],[2+1/2*m, 5/2+1/2*m],c^2*x^2)/(2+m)/(3+m)^3/(5+m)+16*b^2 
*c^2*d^2*x^(3+m)*hypergeom([1, 3/2+1/2*m, 3/2+1/2*m],[2+1/2*m, 5/2+1/2*m], 
c^2*x^2)/(3+m)^2/(5+m)/(m^2+3*m+2)
 

Mathematica [A] (warning: unable to verify)

Time = 0.38 (sec) , antiderivative size = 403, normalized size of antiderivative = 0.53 \[ \int x^m \left (d-c^2 d x^2\right )^2 (a+b \arcsin (c x))^2 \, dx=d^2 x^{1+m} \left (\frac {(a+b \arcsin (c x))^2}{1+m}-\frac {2 c^2 x^2 (a+b \arcsin (c x))^2}{3+m}+\frac {c^4 x^4 (a+b \arcsin (c x))^2}{5+m}+\frac {2 b c x \left (-\left ((3+m) (a+b \arcsin (c x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2+m}{2},\frac {4+m}{2},c^2 x^2\right )\right )+b c x \, _3F_2\left (1,\frac {3}{2}+\frac {m}{2},\frac {3}{2}+\frac {m}{2};2+\frac {m}{2},\frac {5}{2}+\frac {m}{2};c^2 x^2\right )\right )}{(1+m) (2+m) (3+m)}-\frac {4 b c^3 x^3 \left (-\left ((5+m) (a+b \arcsin (c x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {4+m}{2},\frac {6+m}{2},c^2 x^2\right )\right )+b c x \, _3F_2\left (1,\frac {5}{2}+\frac {m}{2},\frac {5}{2}+\frac {m}{2};3+\frac {m}{2},\frac {7}{2}+\frac {m}{2};c^2 x^2\right )\right )}{(3+m) (4+m) (5+m)}+\frac {2 b c^5 x^5 \left (-\left ((7+m) (a+b \arcsin (c x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {6+m}{2},\frac {8+m}{2},c^2 x^2\right )\right )+b c x \, _3F_2\left (1,\frac {7}{2}+\frac {m}{2},\frac {7}{2}+\frac {m}{2};4+\frac {m}{2},\frac {9}{2}+\frac {m}{2};c^2 x^2\right )\right )}{(5+m) (6+m) (7+m)}\right ) \] Input:

Integrate[x^m*(d - c^2*d*x^2)^2*(a + b*ArcSin[c*x])^2,x]
 

Output:

d^2*x^(1 + m)*((a + b*ArcSin[c*x])^2/(1 + m) - (2*c^2*x^2*(a + b*ArcSin[c* 
x])^2)/(3 + m) + (c^4*x^4*(a + b*ArcSin[c*x])^2)/(5 + m) + (2*b*c*x*(-((3 
+ m)*(a + b*ArcSin[c*x])*Hypergeometric2F1[1/2, (2 + m)/2, (4 + m)/2, c^2* 
x^2]) + b*c*x*HypergeometricPFQ[{1, 3/2 + m/2, 3/2 + m/2}, {2 + m/2, 5/2 + 
 m/2}, c^2*x^2]))/((1 + m)*(2 + m)*(3 + m)) - (4*b*c^3*x^3*(-((5 + m)*(a + 
 b*ArcSin[c*x])*Hypergeometric2F1[1/2, (4 + m)/2, (6 + m)/2, c^2*x^2]) + b 
*c*x*HypergeometricPFQ[{1, 5/2 + m/2, 5/2 + m/2}, {3 + m/2, 7/2 + m/2}, c^ 
2*x^2]))/((3 + m)*(4 + m)*(5 + m)) + (2*b*c^5*x^5*(-((7 + m)*(a + b*ArcSin 
[c*x])*Hypergeometric2F1[1/2, (6 + m)/2, (8 + m)/2, c^2*x^2]) + b*c*x*Hype 
rgeometricPFQ[{1, 7/2 + m/2, 7/2 + m/2}, {4 + m/2, 9/2 + m/2}, c^2*x^2]))/ 
((5 + m)*(6 + m)*(7 + m)))
 

Rubi [A] (verified)

Time = 2.17 (sec) , antiderivative size = 650, normalized size of antiderivative = 0.86, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {5202, 27, 5202, 244, 2009, 5138, 5198, 15, 5220}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^m \left (d-c^2 d x^2\right )^2 (a+b \arcsin (c x))^2 \, dx\)

\(\Big \downarrow \) 5202

\(\displaystyle -\frac {2 b c d^2 \int x^{m+1} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))dx}{m+5}+\frac {4 d \int d x^m \left (1-c^2 x^2\right ) (a+b \arcsin (c x))^2dx}{m+5}+\frac {d^2 \left (1-c^2 x^2\right )^2 x^{m+1} (a+b \arcsin (c x))^2}{m+5}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 b c d^2 \int x^{m+1} \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))dx}{m+5}+\frac {4 d^2 \int x^m \left (1-c^2 x^2\right ) (a+b \arcsin (c x))^2dx}{m+5}+\frac {d^2 \left (1-c^2 x^2\right )^2 x^{m+1} (a+b \arcsin (c x))^2}{m+5}\)

\(\Big \downarrow \) 5202

\(\displaystyle -\frac {2 b c d^2 \left (\frac {3 \int x^{m+1} \sqrt {1-c^2 x^2} (a+b \arcsin (c x))dx}{m+5}-\frac {b c \int x^{m+2} \left (1-c^2 x^2\right )dx}{m+5}+\frac {\left (1-c^2 x^2\right )^{3/2} x^{m+2} (a+b \arcsin (c x))}{m+5}\right )}{m+5}+\frac {4 d^2 \left (-\frac {2 b c \int x^{m+1} \sqrt {1-c^2 x^2} (a+b \arcsin (c x))dx}{m+3}+\frac {2 \int x^m (a+b \arcsin (c x))^2dx}{m+3}+\frac {\left (1-c^2 x^2\right ) x^{m+1} (a+b \arcsin (c x))^2}{m+3}\right )}{m+5}+\frac {d^2 \left (1-c^2 x^2\right )^2 x^{m+1} (a+b \arcsin (c x))^2}{m+5}\)

\(\Big \downarrow \) 244

\(\displaystyle -\frac {2 b c d^2 \left (\frac {3 \int x^{m+1} \sqrt {1-c^2 x^2} (a+b \arcsin (c x))dx}{m+5}-\frac {b c \int \left (x^{m+2}-c^2 x^{m+4}\right )dx}{m+5}+\frac {\left (1-c^2 x^2\right )^{3/2} x^{m+2} (a+b \arcsin (c x))}{m+5}\right )}{m+5}+\frac {4 d^2 \left (-\frac {2 b c \int x^{m+1} \sqrt {1-c^2 x^2} (a+b \arcsin (c x))dx}{m+3}+\frac {2 \int x^m (a+b \arcsin (c x))^2dx}{m+3}+\frac {\left (1-c^2 x^2\right ) x^{m+1} (a+b \arcsin (c x))^2}{m+3}\right )}{m+5}+\frac {d^2 \left (1-c^2 x^2\right )^2 x^{m+1} (a+b \arcsin (c x))^2}{m+5}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 b c d^2 \left (\frac {3 \int x^{m+1} \sqrt {1-c^2 x^2} (a+b \arcsin (c x))dx}{m+5}+\frac {\left (1-c^2 x^2\right )^{3/2} x^{m+2} (a+b \arcsin (c x))}{m+5}-\frac {b c \left (\frac {x^{m+3}}{m+3}-\frac {c^2 x^{m+5}}{m+5}\right )}{m+5}\right )}{m+5}+\frac {4 d^2 \left (-\frac {2 b c \int x^{m+1} \sqrt {1-c^2 x^2} (a+b \arcsin (c x))dx}{m+3}+\frac {2 \int x^m (a+b \arcsin (c x))^2dx}{m+3}+\frac {\left (1-c^2 x^2\right ) x^{m+1} (a+b \arcsin (c x))^2}{m+3}\right )}{m+5}+\frac {d^2 \left (1-c^2 x^2\right )^2 x^{m+1} (a+b \arcsin (c x))^2}{m+5}\)

\(\Big \downarrow \) 5138

\(\displaystyle \frac {4 d^2 \left (\frac {2 \left (\frac {x^{m+1} (a+b \arcsin (c x))^2}{m+1}-\frac {2 b c \int \frac {x^{m+1} (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}dx}{m+1}\right )}{m+3}-\frac {2 b c \int x^{m+1} \sqrt {1-c^2 x^2} (a+b \arcsin (c x))dx}{m+3}+\frac {\left (1-c^2 x^2\right ) x^{m+1} (a+b \arcsin (c x))^2}{m+3}\right )}{m+5}-\frac {2 b c d^2 \left (\frac {3 \int x^{m+1} \sqrt {1-c^2 x^2} (a+b \arcsin (c x))dx}{m+5}+\frac {\left (1-c^2 x^2\right )^{3/2} x^{m+2} (a+b \arcsin (c x))}{m+5}-\frac {b c \left (\frac {x^{m+3}}{m+3}-\frac {c^2 x^{m+5}}{m+5}\right )}{m+5}\right )}{m+5}+\frac {d^2 \left (1-c^2 x^2\right )^2 x^{m+1} (a+b \arcsin (c x))^2}{m+5}\)

\(\Big \downarrow \) 5198

\(\displaystyle \frac {4 d^2 \left (\frac {2 \left (\frac {x^{m+1} (a+b \arcsin (c x))^2}{m+1}-\frac {2 b c \int \frac {x^{m+1} (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}dx}{m+1}\right )}{m+3}-\frac {2 b c \left (\frac {\int \frac {x^{m+1} (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}dx}{m+3}-\frac {b c \int x^{m+2}dx}{m+3}+\frac {\sqrt {1-c^2 x^2} x^{m+2} (a+b \arcsin (c x))}{m+3}\right )}{m+3}+\frac {\left (1-c^2 x^2\right ) x^{m+1} (a+b \arcsin (c x))^2}{m+3}\right )}{m+5}-\frac {2 b c d^2 \left (\frac {3 \left (\frac {\int \frac {x^{m+1} (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}dx}{m+3}-\frac {b c \int x^{m+2}dx}{m+3}+\frac {\sqrt {1-c^2 x^2} x^{m+2} (a+b \arcsin (c x))}{m+3}\right )}{m+5}+\frac {\left (1-c^2 x^2\right )^{3/2} x^{m+2} (a+b \arcsin (c x))}{m+5}-\frac {b c \left (\frac {x^{m+3}}{m+3}-\frac {c^2 x^{m+5}}{m+5}\right )}{m+5}\right )}{m+5}+\frac {d^2 \left (1-c^2 x^2\right )^2 x^{m+1} (a+b \arcsin (c x))^2}{m+5}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {4 d^2 \left (\frac {2 \left (\frac {x^{m+1} (a+b \arcsin (c x))^2}{m+1}-\frac {2 b c \int \frac {x^{m+1} (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}dx}{m+1}\right )}{m+3}-\frac {2 b c \left (\frac {\int \frac {x^{m+1} (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}dx}{m+3}+\frac {\sqrt {1-c^2 x^2} x^{m+2} (a+b \arcsin (c x))}{m+3}-\frac {b c x^{m+3}}{(m+3)^2}\right )}{m+3}+\frac {\left (1-c^2 x^2\right ) x^{m+1} (a+b \arcsin (c x))^2}{m+3}\right )}{m+5}-\frac {2 b c d^2 \left (\frac {3 \left (\frac {\int \frac {x^{m+1} (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}dx}{m+3}+\frac {\sqrt {1-c^2 x^2} x^{m+2} (a+b \arcsin (c x))}{m+3}-\frac {b c x^{m+3}}{(m+3)^2}\right )}{m+5}+\frac {\left (1-c^2 x^2\right )^{3/2} x^{m+2} (a+b \arcsin (c x))}{m+5}-\frac {b c \left (\frac {x^{m+3}}{m+3}-\frac {c^2 x^{m+5}}{m+5}\right )}{m+5}\right )}{m+5}+\frac {d^2 \left (1-c^2 x^2\right )^2 x^{m+1} (a+b \arcsin (c x))^2}{m+5}\)

\(\Big \downarrow \) 5220

\(\displaystyle \frac {4 d^2 \left (\frac {2 \left (\frac {x^{m+1} (a+b \arcsin (c x))^2}{m+1}-\frac {2 b c \left (\frac {x^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+2}{2},\frac {m+4}{2},c^2 x^2\right ) (a+b \arcsin (c x))}{m+2}-\frac {b c x^{m+3} \, _3F_2\left (1,\frac {m}{2}+\frac {3}{2},\frac {m}{2}+\frac {3}{2};\frac {m}{2}+2,\frac {m}{2}+\frac {5}{2};c^2 x^2\right )}{m^2+5 m+6}\right )}{m+1}\right )}{m+3}-\frac {2 b c \left (\frac {\frac {x^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+2}{2},\frac {m+4}{2},c^2 x^2\right ) (a+b \arcsin (c x))}{m+2}-\frac {b c x^{m+3} \, _3F_2\left (1,\frac {m}{2}+\frac {3}{2},\frac {m}{2}+\frac {3}{2};\frac {m}{2}+2,\frac {m}{2}+\frac {5}{2};c^2 x^2\right )}{m^2+5 m+6}}{m+3}+\frac {\sqrt {1-c^2 x^2} x^{m+2} (a+b \arcsin (c x))}{m+3}-\frac {b c x^{m+3}}{(m+3)^2}\right )}{m+3}+\frac {\left (1-c^2 x^2\right ) x^{m+1} (a+b \arcsin (c x))^2}{m+3}\right )}{m+5}-\frac {2 b c d^2 \left (\frac {3 \left (\frac {\frac {x^{m+2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+2}{2},\frac {m+4}{2},c^2 x^2\right ) (a+b \arcsin (c x))}{m+2}-\frac {b c x^{m+3} \, _3F_2\left (1,\frac {m}{2}+\frac {3}{2},\frac {m}{2}+\frac {3}{2};\frac {m}{2}+2,\frac {m}{2}+\frac {5}{2};c^2 x^2\right )}{m^2+5 m+6}}{m+3}+\frac {\sqrt {1-c^2 x^2} x^{m+2} (a+b \arcsin (c x))}{m+3}-\frac {b c x^{m+3}}{(m+3)^2}\right )}{m+5}+\frac {\left (1-c^2 x^2\right )^{3/2} x^{m+2} (a+b \arcsin (c x))}{m+5}-\frac {b c \left (\frac {x^{m+3}}{m+3}-\frac {c^2 x^{m+5}}{m+5}\right )}{m+5}\right )}{m+5}+\frac {d^2 \left (1-c^2 x^2\right )^2 x^{m+1} (a+b \arcsin (c x))^2}{m+5}\)

Input:

Int[x^m*(d - c^2*d*x^2)^2*(a + b*ArcSin[c*x])^2,x]
 

Output:

(d^2*x^(1 + m)*(1 - c^2*x^2)^2*(a + b*ArcSin[c*x])^2)/(5 + m) + (4*d^2*((x 
^(1 + m)*(1 - c^2*x^2)*(a + b*ArcSin[c*x])^2)/(3 + m) + (2*((x^(1 + m)*(a 
+ b*ArcSin[c*x])^2)/(1 + m) - (2*b*c*((x^(2 + m)*(a + b*ArcSin[c*x])*Hyper 
geometric2F1[1/2, (2 + m)/2, (4 + m)/2, c^2*x^2])/(2 + m) - (b*c*x^(3 + m) 
*HypergeometricPFQ[{1, 3/2 + m/2, 3/2 + m/2}, {2 + m/2, 5/2 + m/2}, c^2*x^ 
2])/(6 + 5*m + m^2)))/(1 + m)))/(3 + m) - (2*b*c*(-((b*c*x^(3 + m))/(3 + m 
)^2) + (x^(2 + m)*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]))/(3 + m) + ((x^(2 
+ m)*(a + b*ArcSin[c*x])*Hypergeometric2F1[1/2, (2 + m)/2, (4 + m)/2, c^2* 
x^2])/(2 + m) - (b*c*x^(3 + m)*HypergeometricPFQ[{1, 3/2 + m/2, 3/2 + m/2} 
, {2 + m/2, 5/2 + m/2}, c^2*x^2])/(6 + 5*m + m^2))/(3 + m)))/(3 + m)))/(5 
+ m) - (2*b*c*d^2*(-((b*c*(x^(3 + m)/(3 + m) - (c^2*x^(5 + m))/(5 + m)))/( 
5 + m)) + (x^(2 + m)*(1 - c^2*x^2)^(3/2)*(a + b*ArcSin[c*x]))/(5 + m) + (3 
*(-((b*c*x^(3 + m))/(3 + m)^2) + (x^(2 + m)*Sqrt[1 - c^2*x^2]*(a + b*ArcSi 
n[c*x]))/(3 + m) + ((x^(2 + m)*(a + b*ArcSin[c*x])*Hypergeometric2F1[1/2, 
(2 + m)/2, (4 + m)/2, c^2*x^2])/(2 + m) - (b*c*x^(3 + m)*HypergeometricPFQ 
[{1, 3/2 + m/2, 3/2 + m/2}, {2 + m/2, 5/2 + m/2}, c^2*x^2])/(6 + 5*m + m^2 
))/(3 + m)))/(5 + m)))/(5 + m)
 

Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 244
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand 
Integrand[(c*x)^m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p 
, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5138
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] 
:> Simp[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^n/(d*(m + 1))), x] - Simp[b*c*(n 
/(d*(m + 1)))   Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2 
*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
 

rule 5198
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + 
(e_.)*(x_)^2], x_Symbol] :> Simp[(f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcS 
in[c*x])^n/(f*(m + 2))), x] + (Simp[(1/(m + 2))*Simp[Sqrt[d + e*x^2]/Sqrt[1 
 - c^2*x^2]]   Int[(f*x)^m*((a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2]), x], x 
] - Simp[b*c*(n/(f*(m + 2)))*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]]   Int[ 
(f*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, 
 f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])
 

rule 5202
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*ArcS 
in[c*x])^n/(f*(m + 2*p + 1))), x] + (Simp[2*d*(p/(m + 2*p + 1))   Int[(f*x) 
^m*(d + e*x^2)^(p - 1)*(a + b*ArcSin[c*x])^n, x], x] - Simp[b*c*(n/(f*(m + 
2*p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f*x)^(m + 1)*(1 - c^2 
*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, 
e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] &&  !LtQ[m, -1]
 

rule 5220
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_. 
)*(x_)^2], x_Symbol] :> Simp[((f*x)^(m + 1)/(f*(m + 1)))*Simp[Sqrt[1 - c^2* 
x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])*Hypergeometric2F1[1/2, (1 + m)/2, 
 (3 + m)/2, c^2*x^2], x] - Simp[b*c*((f*x)^(m + 2)/(f^2*(m + 1)*(m + 2)))*S 
imp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*HypergeometricPFQ[{1, 1 + m/2, 1 + m 
/2}, {3/2 + m/2, 2 + m/2}, c^2*x^2], x] /; FreeQ[{a, b, c, d, e, f, m}, x] 
&& EqQ[c^2*d + e, 0] &&  !IntegerQ[m]
 
Maple [F]

\[\int x^{m} \left (-c^{2} d \,x^{2}+d \right )^{2} \left (a +b \arcsin \left (c x \right )\right )^{2}d x\]

Input:

int(x^m*(-c^2*d*x^2+d)^2*(a+b*arcsin(c*x))^2,x)
 

Output:

int(x^m*(-c^2*d*x^2+d)^2*(a+b*arcsin(c*x))^2,x)
 

Fricas [F]

\[ \int x^m \left (d-c^2 d x^2\right )^2 (a+b \arcsin (c x))^2 \, dx=\int { {\left (c^{2} d x^{2} - d\right )}^{2} {\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{m} \,d x } \] Input:

integrate(x^m*(-c^2*d*x^2+d)^2*(a+b*arcsin(c*x))^2,x, algorithm="fricas")
 

Output:

integral((a^2*c^4*d^2*x^4 - 2*a^2*c^2*d^2*x^2 + a^2*d^2 + (b^2*c^4*d^2*x^4 
 - 2*b^2*c^2*d^2*x^2 + b^2*d^2)*arcsin(c*x)^2 + 2*(a*b*c^4*d^2*x^4 - 2*a*b 
*c^2*d^2*x^2 + a*b*d^2)*arcsin(c*x))*x^m, x)
 

Sympy [F]

\[ \int x^m \left (d-c^2 d x^2\right )^2 (a+b \arcsin (c x))^2 \, dx=d^{2} \left (\int a^{2} x^{m}\, dx + \int b^{2} x^{m} \operatorname {asin}^{2}{\left (c x \right )}\, dx + \int 2 a b x^{m} \operatorname {asin}{\left (c x \right )}\, dx + \int \left (- 2 a^{2} c^{2} x^{2} x^{m}\right )\, dx + \int a^{2} c^{4} x^{4} x^{m}\, dx + \int \left (- 2 b^{2} c^{2} x^{2} x^{m} \operatorname {asin}^{2}{\left (c x \right )}\right )\, dx + \int b^{2} c^{4} x^{4} x^{m} \operatorname {asin}^{2}{\left (c x \right )}\, dx + \int \left (- 4 a b c^{2} x^{2} x^{m} \operatorname {asin}{\left (c x \right )}\right )\, dx + \int 2 a b c^{4} x^{4} x^{m} \operatorname {asin}{\left (c x \right )}\, dx\right ) \] Input:

integrate(x**m*(-c**2*d*x**2+d)**2*(a+b*asin(c*x))**2,x)
 

Output:

d**2*(Integral(a**2*x**m, x) + Integral(b**2*x**m*asin(c*x)**2, x) + Integ 
ral(2*a*b*x**m*asin(c*x), x) + Integral(-2*a**2*c**2*x**2*x**m, x) + Integ 
ral(a**2*c**4*x**4*x**m, x) + Integral(-2*b**2*c**2*x**2*x**m*asin(c*x)**2 
, x) + Integral(b**2*c**4*x**4*x**m*asin(c*x)**2, x) + Integral(-4*a*b*c** 
2*x**2*x**m*asin(c*x), x) + Integral(2*a*b*c**4*x**4*x**m*asin(c*x), x))
 

Maxima [F]

\[ \int x^m \left (d-c^2 d x^2\right )^2 (a+b \arcsin (c x))^2 \, dx=\int { {\left (c^{2} d x^{2} - d\right )}^{2} {\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{m} \,d x } \] Input:

integrate(x^m*(-c^2*d*x^2+d)^2*(a+b*arcsin(c*x))^2,x, algorithm="maxima")
 

Output:

a^2*c^4*d^2*x^(m + 5)/(m + 5) - 2*a^2*c^2*d^2*x^(m + 3)/(m + 3) + a^2*d^2* 
x^(m + 1)/(m + 1) + (((b^2*c^4*d^2*m^2 + 4*b^2*c^4*d^2*m + 3*b^2*c^4*d^2)* 
x^5 - 2*(b^2*c^2*d^2*m^2 + 6*b^2*c^2*d^2*m + 5*b^2*c^2*d^2)*x^3 + (b^2*d^2 
*m^2 + 8*b^2*d^2*m + 15*b^2*d^2)*x)*x^m*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c 
*x + 1))^2 + (m^3 + 9*m^2 + 23*m + 15)*integrate(-2*(((b^2*c^5*d^2*m^2 + 4 
*b^2*c^5*d^2*m + 3*b^2*c^5*d^2)*x^5 - 2*(b^2*c^3*d^2*m^2 + 6*b^2*c^3*d^2*m 
 + 5*b^2*c^3*d^2)*x^3 + (b^2*c*d^2*m^2 + 8*b^2*c*d^2*m + 15*b^2*c*d^2)*x)* 
sqrt(c*x + 1)*sqrt(-c*x + 1)*x^m*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1) 
) - (a*b*d^2*m^3 - (a*b*c^6*d^2*m^3 + 9*a*b*c^6*d^2*m^2 + 23*a*b*c^6*d^2*m 
 + 15*a*b*c^6*d^2)*x^6 + 9*a*b*d^2*m^2 + 23*a*b*d^2*m + 3*(a*b*c^4*d^2*m^3 
 + 9*a*b*c^4*d^2*m^2 + 23*a*b*c^4*d^2*m + 15*a*b*c^4*d^2)*x^4 + 15*a*b*d^2 
 - 3*(a*b*c^2*d^2*m^3 + 9*a*b*c^2*d^2*m^2 + 23*a*b*c^2*d^2*m + 15*a*b*c^2* 
d^2)*x^2)*x^m*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)))/(m^3 - (c^2*m^3 
+ 9*c^2*m^2 + 23*c^2*m + 15*c^2)*x^2 + 9*m^2 + 23*m + 15), x))/(m^3 + 9*m^ 
2 + 23*m + 15)
                                                                                    
                                                                                    
 

Giac [F]

\[ \int x^m \left (d-c^2 d x^2\right )^2 (a+b \arcsin (c x))^2 \, dx=\int { {\left (c^{2} d x^{2} - d\right )}^{2} {\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{m} \,d x } \] Input:

integrate(x^m*(-c^2*d*x^2+d)^2*(a+b*arcsin(c*x))^2,x, algorithm="giac")
 

Output:

integrate((c^2*d*x^2 - d)^2*(b*arcsin(c*x) + a)^2*x^m, x)
 

Mupad [F(-1)]

Timed out. \[ \int x^m \left (d-c^2 d x^2\right )^2 (a+b \arcsin (c x))^2 \, dx=\int x^m\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2\,{\left (d-c^2\,d\,x^2\right )}^2 \,d x \] Input:

int(x^m*(a + b*asin(c*x))^2*(d - c^2*d*x^2)^2,x)
 

Output:

int(x^m*(a + b*asin(c*x))^2*(d - c^2*d*x^2)^2, x)
 

Reduce [F]

\[ \int x^m \left (d-c^2 d x^2\right )^2 (a+b \arcsin (c x))^2 \, dx =\text {Too large to display} \] Input:

int(x^m*(-c^2*d*x^2+d)^2*(a+b*asin(c*x))^2,x)
 

Output:

(d**2*(x**m*a**2*c**4*m**2*x**5 + 4*x**m*a**2*c**4*m*x**5 + 3*x**m*a**2*c* 
*4*x**5 - 2*x**m*a**2*c**2*m**2*x**3 - 12*x**m*a**2*c**2*m*x**3 - 10*x**m* 
a**2*c**2*x**3 + x**m*a**2*m**2*x + 8*x**m*a**2*m*x + 15*x**m*a**2*x + 2*i 
nt(x**m*asin(c*x)*x**4,x)*a*b*c**4*m**3 + 18*int(x**m*asin(c*x)*x**4,x)*a* 
b*c**4*m**2 + 46*int(x**m*asin(c*x)*x**4,x)*a*b*c**4*m + 30*int(x**m*asin( 
c*x)*x**4,x)*a*b*c**4 - 4*int(x**m*asin(c*x)*x**2,x)*a*b*c**2*m**3 - 36*in 
t(x**m*asin(c*x)*x**2,x)*a*b*c**2*m**2 - 92*int(x**m*asin(c*x)*x**2,x)*a*b 
*c**2*m - 60*int(x**m*asin(c*x)*x**2,x)*a*b*c**2 + 2*int(x**m*asin(c*x),x) 
*a*b*m**3 + 18*int(x**m*asin(c*x),x)*a*b*m**2 + 46*int(x**m*asin(c*x),x)*a 
*b*m + 30*int(x**m*asin(c*x),x)*a*b + int(x**m*asin(c*x)**2*x**4,x)*b**2*c 
**4*m**3 + 9*int(x**m*asin(c*x)**2*x**4,x)*b**2*c**4*m**2 + 23*int(x**m*as 
in(c*x)**2*x**4,x)*b**2*c**4*m + 15*int(x**m*asin(c*x)**2*x**4,x)*b**2*c** 
4 - 2*int(x**m*asin(c*x)**2*x**2,x)*b**2*c**2*m**3 - 18*int(x**m*asin(c*x) 
**2*x**2,x)*b**2*c**2*m**2 - 46*int(x**m*asin(c*x)**2*x**2,x)*b**2*c**2*m 
- 30*int(x**m*asin(c*x)**2*x**2,x)*b**2*c**2 + int(x**m*asin(c*x)**2,x)*b* 
*2*m**3 + 9*int(x**m*asin(c*x)**2,x)*b**2*m**2 + 23*int(x**m*asin(c*x)**2, 
x)*b**2*m + 15*int(x**m*asin(c*x)**2,x)*b**2))/(m**3 + 9*m**2 + 23*m + 15)