\(\int \frac {x^3}{\sqrt {1-c^2 x^2} (a+b \arcsin (c x))} \, dx\) [322]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 121 \[ \int \frac {x^3}{\sqrt {1-c^2 x^2} (a+b \arcsin (c x))} \, dx=-\frac {3 \operatorname {CosIntegral}\left (\frac {a+b \arcsin (c x)}{b}\right ) \sin \left (\frac {a}{b}\right )}{4 b c^4}+\frac {\operatorname {CosIntegral}\left (\frac {3 (a+b \arcsin (c x))}{b}\right ) \sin \left (\frac {3 a}{b}\right )}{4 b c^4}+\frac {3 \cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \arcsin (c x)}{b}\right )}{4 b c^4}-\frac {\cos \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 (a+b \arcsin (c x))}{b}\right )}{4 b c^4} \] Output:

-3/4*Ci((a+b*arcsin(c*x))/b)*sin(a/b)/b/c^4+1/4*Ci(3*(a+b*arcsin(c*x))/b)* 
sin(3*a/b)/b/c^4+3/4*cos(a/b)*Si((a+b*arcsin(c*x))/b)/b/c^4-1/4*cos(3*a/b) 
*Si(3*(a+b*arcsin(c*x))/b)/b/c^4
 

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.76 \[ \int \frac {x^3}{\sqrt {1-c^2 x^2} (a+b \arcsin (c x))} \, dx=-\frac {3 \operatorname {CosIntegral}\left (\frac {a}{b}+\arcsin (c x)\right ) \sin \left (\frac {a}{b}\right )-\operatorname {CosIntegral}\left (3 \left (\frac {a}{b}+\arcsin (c x)\right )\right ) \sin \left (\frac {3 a}{b}\right )-3 \cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\arcsin (c x)\right )+\cos \left (\frac {3 a}{b}\right ) \text {Si}\left (3 \left (\frac {a}{b}+\arcsin (c x)\right )\right )}{4 b c^4} \] Input:

Integrate[x^3/(Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])),x]
 

Output:

-1/4*(3*CosIntegral[a/b + ArcSin[c*x]]*Sin[a/b] - CosIntegral[3*(a/b + Arc 
Sin[c*x])]*Sin[(3*a)/b] - 3*Cos[a/b]*SinIntegral[a/b + ArcSin[c*x]] + Cos[ 
(3*a)/b]*SinIntegral[3*(a/b + ArcSin[c*x])])/(b*c^4)
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.86, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {5224, 25, 3042, 3793, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3}{\sqrt {1-c^2 x^2} (a+b \arcsin (c x))} \, dx\)

\(\Big \downarrow \) 5224

\(\displaystyle \frac {\int -\frac {\sin ^3\left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b c^4}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {\sin ^3\left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b c^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sin \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )^3}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b c^4}\)

\(\Big \downarrow \) 3793

\(\displaystyle -\frac {\int \left (\frac {3 \sin \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{4 (a+b \arcsin (c x))}-\frac {\sin \left (\frac {3 a}{b}-\frac {3 (a+b \arcsin (c x))}{b}\right )}{4 (a+b \arcsin (c x))}\right )d(a+b \arcsin (c x))}{b c^4}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-\frac {3}{4} \sin \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a+b \arcsin (c x)}{b}\right )+\frac {1}{4} \sin \left (\frac {3 a}{b}\right ) \operatorname {CosIntegral}\left (\frac {3 (a+b \arcsin (c x))}{b}\right )+\frac {3}{4} \cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \arcsin (c x)}{b}\right )-\frac {1}{4} \cos \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 (a+b \arcsin (c x))}{b}\right )}{b c^4}\)

Input:

Int[x^3/(Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])),x]
 

Output:

((-3*CosIntegral[(a + b*ArcSin[c*x])/b]*Sin[a/b])/4 + (CosIntegral[(3*(a + 
 b*ArcSin[c*x]))/b]*Sin[(3*a)/b])/4 + (3*Cos[a/b]*SinIntegral[(a + b*ArcSi 
n[c*x])/b])/4 - (Cos[(3*a)/b]*SinIntegral[(3*(a + b*ArcSin[c*x]))/b])/4)/( 
b*c^4)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3793
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> In 
t[ExpandTrigReduce[(c + d*x)^m, Sin[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f 
, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1]))
 

rule 5224
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^ 
2)^(p_.), x_Symbol] :> Simp[(1/(b*c^(m + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x 
^2)^p]   Subst[Int[x^n*Sin[-a/b + x/b]^m*Cos[-a/b + x/b]^(2*p + 1), x], x, 
a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] 
 && IGtQ[2*p + 2, 0] && IGtQ[m, 0]
 
Maple [A] (verified)

Time = 0.18 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.77

method result size
default \(-\frac {\operatorname {Si}\left (3 \arcsin \left (c x \right )+\frac {3 a}{b}\right ) \cos \left (\frac {3 a}{b}\right )-\operatorname {Ci}\left (3 \arcsin \left (c x \right )+\frac {3 a}{b}\right ) \sin \left (\frac {3 a}{b}\right )-3 \,\operatorname {Si}\left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \cos \left (\frac {a}{b}\right )+3 \,\operatorname {Ci}\left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \sin \left (\frac {a}{b}\right )}{4 c^{4} b}\) \(93\)

Input:

int(x^3/(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x)),x,method=_RETURNVERBOSE)
 

Output:

-1/4/c^4*(Si(3*arcsin(c*x)+3*a/b)*cos(3*a/b)-Ci(3*arcsin(c*x)+3*a/b)*sin(3 
*a/b)-3*Si(arcsin(c*x)+a/b)*cos(a/b)+3*Ci(arcsin(c*x)+a/b)*sin(a/b))/b
 

Fricas [F]

\[ \int \frac {x^3}{\sqrt {1-c^2 x^2} (a+b \arcsin (c x))} \, dx=\int { \frac {x^{3}}{\sqrt {-c^{2} x^{2} + 1} {\left (b \arcsin \left (c x\right ) + a\right )}} \,d x } \] Input:

integrate(x^3/(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x)),x, algorithm="fricas")
 

Output:

integral(-sqrt(-c^2*x^2 + 1)*x^3/(a*c^2*x^2 + (b*c^2*x^2 - b)*arcsin(c*x) 
- a), x)
 

Sympy [F]

\[ \int \frac {x^3}{\sqrt {1-c^2 x^2} (a+b \arcsin (c x))} \, dx=\int \frac {x^{3}}{\sqrt {- \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )}\, dx \] Input:

integrate(x**3/(-c**2*x**2+1)**(1/2)/(a+b*asin(c*x)),x)
 

Output:

Integral(x**3/(sqrt(-(c*x - 1)*(c*x + 1))*(a + b*asin(c*x))), x)
 

Maxima [F]

\[ \int \frac {x^3}{\sqrt {1-c^2 x^2} (a+b \arcsin (c x))} \, dx=\int { \frac {x^{3}}{\sqrt {-c^{2} x^{2} + 1} {\left (b \arcsin \left (c x\right ) + a\right )}} \,d x } \] Input:

integrate(x^3/(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x)),x, algorithm="maxima")
 

Output:

integrate(x^3/(sqrt(-c^2*x^2 + 1)*(b*arcsin(c*x) + a)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {x^3}{\sqrt {1-c^2 x^2} (a+b \arcsin (c x))} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^3/(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x)),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^3}{\sqrt {1-c^2 x^2} (a+b \arcsin (c x))} \, dx=\int \frac {x^3}{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,\sqrt {1-c^2\,x^2}} \,d x \] Input:

int(x^3/((a + b*asin(c*x))*(1 - c^2*x^2)^(1/2)),x)
 

Output:

int(x^3/((a + b*asin(c*x))*(1 - c^2*x^2)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {x^3}{\sqrt {1-c^2 x^2} (a+b \arcsin (c x))} \, dx=\int \frac {x^{3}}{\sqrt {-c^{2} x^{2}+1}\, \mathit {asin} \left (c x \right ) b +\sqrt {-c^{2} x^{2}+1}\, a}d x \] Input:

int(x^3/(-c^2*x^2+1)^(1/2)/(a+b*asin(c*x)),x)
 

Output:

int(x**3/(sqrt( - c**2*x**2 + 1)*asin(c*x)*b + sqrt( - c**2*x**2 + 1)*a),x 
)