\(\int \frac {x^2 (d-c^2 d x^2)}{(a+b \arcsin (c x))^{3/2}} \, dx\) [388]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-2)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 591 \[ \int \frac {x^2 \left (d-c^2 d x^2\right )}{(a+b \arcsin (c x))^{3/2}} \, dx=-\frac {2 d x^2 \left (1-c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \arcsin (c x)}}-\frac {5 d \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{2 b^{3/2} c^3}+\frac {d \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}-\frac {5 d \sqrt {\frac {\pi }{6}} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c^3}+\frac {d \sqrt {\frac {2 \pi }{3}} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}+\frac {d \sqrt {\frac {5 \pi }{2}} \cos \left (\frac {5 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {10}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )}{4 b^{3/2} c^3}+\frac {5 d \sqrt {\frac {\pi }{2}} \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{2 b^{3/2} c^3}-\frac {d \sqrt {2 \pi } \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{b^{3/2} c^3}+\frac {5 d \sqrt {\frac {\pi }{6}} \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{4 b^{3/2} c^3}-\frac {d \sqrt {\frac {2 \pi }{3}} \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{b^{3/2} c^3}-\frac {d \sqrt {\frac {5 \pi }{2}} \operatorname {FresnelC}\left (\frac {\sqrt {\frac {10}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {5 a}{b}\right )}{4 b^{3/2} c^3} \] Output:

-2*d*x^2*(-c^2*x^2+1)^(3/2)/b/c/(a+b*arcsin(c*x))^(1/2)-1/4*d*2^(1/2)*Pi^( 
1/2)*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))/b 
^(3/2)/c^3+1/8*d*6^(1/2)*Pi^(1/2)*cos(3*a/b)*FresnelS(6^(1/2)/Pi^(1/2)*(a+ 
b*arcsin(c*x))^(1/2)/b^(1/2))/b^(3/2)/c^3+1/8*d*10^(1/2)*Pi^(1/2)*cos(5*a/ 
b)*FresnelS(10^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))/b^(3/2)/c^3 
+1/4*d*2^(1/2)*Pi^(1/2)*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/ 
b^(1/2))*sin(a/b)/b^(3/2)/c^3-1/8*d*6^(1/2)*Pi^(1/2)*FresnelC(6^(1/2)/Pi^( 
1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(3*a/b)/b^(3/2)/c^3-1/8*d*10^(1/2 
)*Pi^(1/2)*FresnelC(10^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin 
(5*a/b)/b^(3/2)/c^3
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.54 (sec) , antiderivative size = 514, normalized size of antiderivative = 0.87 \[ \int \frac {x^2 \left (d-c^2 d x^2\right )}{(a+b \arcsin (c x))^{3/2}} \, dx=\frac {d e^{-\frac {5 i (a+b \arcsin (c x))}{b}} \left (e^{\frac {5 i a}{b}}+e^{\frac {5 i a}{b}+2 i \arcsin (c x)}-2 e^{\frac {5 i a}{b}+4 i \arcsin (c x)}-2 e^{\frac {5 i a}{b}+6 i \arcsin (c x)}+e^{\frac {5 i a}{b}+8 i \arcsin (c x)}+e^{\frac {5 i (a+2 b \arcsin (c x))}{b}}+2 e^{\frac {4 i a}{b}+5 i \arcsin (c x)} \sqrt {-\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {1}{2},-\frac {i (a+b \arcsin (c x))}{b}\right )+2 e^{\frac {6 i a}{b}+5 i \arcsin (c x)} \sqrt {\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {1}{2},\frac {i (a+b \arcsin (c x))}{b}\right )-\sqrt {3} e^{\frac {2 i a}{b}+5 i \arcsin (c x)} \sqrt {-\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {1}{2},-\frac {3 i (a+b \arcsin (c x))}{b}\right )-\sqrt {3} e^{\frac {8 i a}{b}+5 i \arcsin (c x)} \sqrt {\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {1}{2},\frac {3 i (a+b \arcsin (c x))}{b}\right )-\sqrt {5} e^{5 i \arcsin (c x)} \sqrt {-\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {1}{2},-\frac {5 i (a+b \arcsin (c x))}{b}\right )-\sqrt {5} e^{\frac {5 i (2 a+b \arcsin (c x))}{b}} \sqrt {\frac {i (a+b \arcsin (c x))}{b}} \Gamma \left (\frac {1}{2},\frac {5 i (a+b \arcsin (c x))}{b}\right )\right )}{16 b c^3 \sqrt {a+b \arcsin (c x)}} \] Input:

Integrate[(x^2*(d - c^2*d*x^2))/(a + b*ArcSin[c*x])^(3/2),x]
 

Output:

(d*(E^(((5*I)*a)/b) + E^(((5*I)*a)/b + (2*I)*ArcSin[c*x]) - 2*E^(((5*I)*a) 
/b + (4*I)*ArcSin[c*x]) - 2*E^(((5*I)*a)/b + (6*I)*ArcSin[c*x]) + E^(((5*I 
)*a)/b + (8*I)*ArcSin[c*x]) + E^(((5*I)*(a + 2*b*ArcSin[c*x]))/b) + 2*E^(( 
(4*I)*a)/b + (5*I)*ArcSin[c*x])*Sqrt[((-I)*(a + b*ArcSin[c*x]))/b]*Gamma[1 
/2, ((-I)*(a + b*ArcSin[c*x]))/b] + 2*E^(((6*I)*a)/b + (5*I)*ArcSin[c*x])* 
Sqrt[(I*(a + b*ArcSin[c*x]))/b]*Gamma[1/2, (I*(a + b*ArcSin[c*x]))/b] - Sq 
rt[3]*E^(((2*I)*a)/b + (5*I)*ArcSin[c*x])*Sqrt[((-I)*(a + b*ArcSin[c*x]))/ 
b]*Gamma[1/2, ((-3*I)*(a + b*ArcSin[c*x]))/b] - Sqrt[3]*E^(((8*I)*a)/b + ( 
5*I)*ArcSin[c*x])*Sqrt[(I*(a + b*ArcSin[c*x]))/b]*Gamma[1/2, ((3*I)*(a + b 
*ArcSin[c*x]))/b] - Sqrt[5]*E^((5*I)*ArcSin[c*x])*Sqrt[((-I)*(a + b*ArcSin 
[c*x]))/b]*Gamma[1/2, ((-5*I)*(a + b*ArcSin[c*x]))/b] - Sqrt[5]*E^(((5*I)* 
(2*a + b*ArcSin[c*x]))/b)*Sqrt[(I*(a + b*ArcSin[c*x]))/b]*Gamma[1/2, ((5*I 
)*(a + b*ArcSin[c*x]))/b]))/(16*b*c^3*E^(((5*I)*(a + b*ArcSin[c*x]))/b)*Sq 
rt[a + b*ArcSin[c*x]])
 

Rubi [A] (verified)

Time = 1.53 (sec) , antiderivative size = 585, normalized size of antiderivative = 0.99, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {5214, 5224, 25, 4906, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \left (d-c^2 d x^2\right )}{(a+b \arcsin (c x))^{3/2}} \, dx\)

\(\Big \downarrow \) 5214

\(\displaystyle \frac {4 d \int \frac {x \sqrt {1-c^2 x^2}}{\sqrt {a+b \arcsin (c x)}}dx}{b c}-\frac {10 c d \int \frac {x^3 \sqrt {1-c^2 x^2}}{\sqrt {a+b \arcsin (c x)}}dx}{b}-\frac {2 d x^2 \left (1-c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \arcsin (c x)}}\)

\(\Big \downarrow \) 5224

\(\displaystyle -\frac {10 d \int -\frac {\cos ^2\left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right ) \sin ^3\left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))}{b^2 c^3}+\frac {4 d \int -\frac {\cos ^2\left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right ) \sin \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))}{b^2 c^3}-\frac {2 d x^2 \left (1-c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \arcsin (c x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {10 d \int \frac {\cos ^2\left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right ) \sin ^3\left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))}{b^2 c^3}-\frac {4 d \int \frac {\cos ^2\left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right ) \sin \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{\sqrt {a+b \arcsin (c x)}}d(a+b \arcsin (c x))}{b^2 c^3}-\frac {2 d x^2 \left (1-c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \arcsin (c x)}}\)

\(\Big \downarrow \) 4906

\(\displaystyle \frac {10 d \int \left (-\frac {\sin \left (\frac {5 a}{b}-\frac {5 (a+b \arcsin (c x))}{b}\right )}{16 \sqrt {a+b \arcsin (c x)}}+\frac {\sin \left (\frac {3 a}{b}-\frac {3 (a+b \arcsin (c x))}{b}\right )}{16 \sqrt {a+b \arcsin (c x)}}+\frac {\sin \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{8 \sqrt {a+b \arcsin (c x)}}\right )d(a+b \arcsin (c x))}{b^2 c^3}-\frac {4 d \int \left (\frac {\sin \left (\frac {3 a}{b}-\frac {3 (a+b \arcsin (c x))}{b}\right )}{4 \sqrt {a+b \arcsin (c x)}}+\frac {\sin \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{4 \sqrt {a+b \arcsin (c x)}}\right )d(a+b \arcsin (c x))}{b^2 c^3}-\frac {2 d x^2 \left (1-c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \arcsin (c x)}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {4 d \left (-\frac {1}{2} \sqrt {\frac {\pi }{2}} \sqrt {b} \sin \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )-\frac {1}{2} \sqrt {\frac {\pi }{6}} \sqrt {b} \sin \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )+\frac {1}{2} \sqrt {\frac {\pi }{2}} \sqrt {b} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )+\frac {1}{2} \sqrt {\frac {\pi }{6}} \sqrt {b} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )\right )}{b^2 c^3}-\frac {10 d \left (-\frac {1}{4} \sqrt {\frac {\pi }{2}} \sqrt {b} \sin \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )-\frac {1}{8} \sqrt {\frac {\pi }{6}} \sqrt {b} \sin \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )+\frac {1}{8} \sqrt {\frac {\pi }{10}} \sqrt {b} \sin \left (\frac {5 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {10}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )+\frac {1}{4} \sqrt {\frac {\pi }{2}} \sqrt {b} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )+\frac {1}{8} \sqrt {\frac {\pi }{6}} \sqrt {b} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )-\frac {1}{8} \sqrt {\frac {\pi }{10}} \sqrt {b} \cos \left (\frac {5 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {10}{\pi }} \sqrt {a+b \arcsin (c x)}}{\sqrt {b}}\right )\right )}{b^2 c^3}-\frac {2 d x^2 \left (1-c^2 x^2\right )^{3/2}}{b c \sqrt {a+b \arcsin (c x)}}\)

Input:

Int[(x^2*(d - c^2*d*x^2))/(a + b*ArcSin[c*x])^(3/2),x]
 

Output:

(-2*d*x^2*(1 - c^2*x^2)^(3/2))/(b*c*Sqrt[a + b*ArcSin[c*x]]) + (4*d*((Sqrt 
[b]*Sqrt[Pi/2]*Cos[a/b]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt 
[b]])/2 + (Sqrt[b]*Sqrt[Pi/6]*Cos[(3*a)/b]*FresnelS[(Sqrt[6/Pi]*Sqrt[a + b 
*ArcSin[c*x]])/Sqrt[b]])/2 - (Sqrt[b]*Sqrt[Pi/2]*FresnelC[(Sqrt[2/Pi]*Sqrt 
[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[a/b])/2 - (Sqrt[b]*Sqrt[Pi/6]*FresnelC[( 
Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[(3*a)/b])/2))/(b^2*c^3) - 
 (10*d*((Sqrt[b]*Sqrt[Pi/2]*Cos[a/b]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSi 
n[c*x]])/Sqrt[b]])/4 + (Sqrt[b]*Sqrt[Pi/6]*Cos[(3*a)/b]*FresnelS[(Sqrt[6/P 
i]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]])/8 - (Sqrt[b]*Sqrt[Pi/10]*Cos[(5*a)/b 
]*FresnelS[(Sqrt[10/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]])/8 - (Sqrt[b]*Sq 
rt[Pi/2]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[a/b])/ 
4 - (Sqrt[b]*Sqrt[Pi/6]*FresnelC[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt 
[b]]*Sin[(3*a)/b])/8 + (Sqrt[b]*Sqrt[Pi/10]*FresnelC[(Sqrt[10/Pi]*Sqrt[a + 
 b*ArcSin[c*x]])/Sqrt[b]]*Sin[(5*a)/b])/8))/(b^2*c^3)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 4906
Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b 
_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin[a + b*x 
]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IG 
tQ[p, 0]
 

rule 5214
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_. 
)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)^m*Sqrt[1 - c^2*x^2]*(d + e*x^2)^p* 
((a + b*ArcSin[c*x])^(n + 1)/(b*c*(n + 1))), x] + (-Simp[f*(m/(b*c*(n + 1)) 
)*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p 
- 1/2)*(a + b*ArcSin[c*x])^(n + 1), x], x] + Simp[c*((m + 2*p + 1)/(b*f*(n 
+ 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f*x)^(m + 1)*(1 - c^2*x^2 
)^(p - 1/2)*(a + b*ArcSin[c*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d, e, f 
}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] && IGtQ[2*p, 0] && NeQ[m + 2*p + 1 
, 0] && IGtQ[m, -3]
 

rule 5224
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^ 
2)^(p_.), x_Symbol] :> Simp[(1/(b*c^(m + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x 
^2)^p]   Subst[Int[x^n*Sin[-a/b + x/b]^m*Cos[-a/b + x/b]^(2*p + 1), x], x, 
a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] 
 && IGtQ[2*p + 2, 0] && IGtQ[m, 0]
 
Maple [A] (verified)

Time = 0.95 (sec) , antiderivative size = 447, normalized size of antiderivative = 0.76

method result size
default \(-\frac {d \left (-2 \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \cos \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right )-2 \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \sin \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right )+\sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) \sqrt {-\frac {3}{b}}+\sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \sin \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) \sqrt {-\frac {3}{b}}+\cos \left (\frac {5 a}{b}\right ) \operatorname {FresnelS}\left (\frac {5 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {5}{b}}\, b}\right ) \sqrt {a +b \arcsin \left (c x \right )}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {-\frac {5}{b}}+\sin \left (\frac {5 a}{b}\right ) \operatorname {FresnelC}\left (\frac {5 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {5}{b}}\, b}\right ) \sqrt {a +b \arcsin \left (c x \right )}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {-\frac {5}{b}}+2 \cos \left (-\frac {a +b \arcsin \left (c x \right )}{b}+\frac {a}{b}\right )-\cos \left (-\frac {3 \left (a +b \arcsin \left (c x \right )\right )}{b}+\frac {3 a}{b}\right )-\cos \left (-\frac {5 \left (a +b \arcsin \left (c x \right )\right )}{b}+\frac {5 a}{b}\right )\right )}{8 c^{3} b \sqrt {a +b \arcsin \left (c x \right )}}\) \(447\)

Input:

int(x^2*(-c^2*d*x^2+d)/(a+b*arcsin(c*x))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/8*d/c^3/b*(-2*(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(c*x))^(1/2)*cos 
(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)-2* 
(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(c*x))^(1/2)*sin(a/b)*FresnelC(2^ 
(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)+Pi^(1/2)*2^(1/2)*(a 
+b*arcsin(c*x))^(1/2)*cos(3*a/b)*FresnelS(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)* 
(a+b*arcsin(c*x))^(1/2)/b)*(-3/b)^(1/2)+Pi^(1/2)*2^(1/2)*(a+b*arcsin(c*x)) 
^(1/2)*sin(3*a/b)*FresnelC(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(c*x 
))^(1/2)/b)*(-3/b)^(1/2)+cos(5*a/b)*FresnelS(5*2^(1/2)/Pi^(1/2)/(-5/b)^(1/ 
2)*(a+b*arcsin(c*x))^(1/2)/b)*(a+b*arcsin(c*x))^(1/2)*Pi^(1/2)*2^(1/2)*(-5 
/b)^(1/2)+sin(5*a/b)*FresnelC(5*2^(1/2)/Pi^(1/2)/(-5/b)^(1/2)*(a+b*arcsin( 
c*x))^(1/2)/b)*(a+b*arcsin(c*x))^(1/2)*Pi^(1/2)*2^(1/2)*(-5/b)^(1/2)+2*cos 
(-(a+b*arcsin(c*x))/b+a/b)-cos(-3*(a+b*arcsin(c*x))/b+3*a/b)-cos(-5*(a+b*a 
rcsin(c*x))/b+5*a/b))/(a+b*arcsin(c*x))^(1/2)
 

Fricas [F(-2)]

Exception generated. \[ \int \frac {x^2 \left (d-c^2 d x^2\right )}{(a+b \arcsin (c x))^{3/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^2*(-c^2*d*x^2+d)/(a+b*arcsin(c*x))^(3/2),x, algorithm="fricas" 
)
 

Output:

Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 

Sympy [F]

\[ \int \frac {x^2 \left (d-c^2 d x^2\right )}{(a+b \arcsin (c x))^{3/2}} \, dx=- d \left (\int \left (- \frac {x^{2}}{a \sqrt {a + b \operatorname {asin}{\left (c x \right )}} + b \sqrt {a + b \operatorname {asin}{\left (c x \right )}} \operatorname {asin}{\left (c x \right )}}\right )\, dx + \int \frac {c^{2} x^{4}}{a \sqrt {a + b \operatorname {asin}{\left (c x \right )}} + b \sqrt {a + b \operatorname {asin}{\left (c x \right )}} \operatorname {asin}{\left (c x \right )}}\, dx\right ) \] Input:

integrate(x**2*(-c**2*d*x**2+d)/(a+b*asin(c*x))**(3/2),x)
 

Output:

-d*(Integral(-x**2/(a*sqrt(a + b*asin(c*x)) + b*sqrt(a + b*asin(c*x))*asin 
(c*x)), x) + Integral(c**2*x**4/(a*sqrt(a + b*asin(c*x)) + b*sqrt(a + b*as 
in(c*x))*asin(c*x)), x))
 

Maxima [F]

\[ \int \frac {x^2 \left (d-c^2 d x^2\right )}{(a+b \arcsin (c x))^{3/2}} \, dx=\int { -\frac {{\left (c^{2} d x^{2} - d\right )} x^{2}}{{\left (b \arcsin \left (c x\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^2*(-c^2*d*x^2+d)/(a+b*arcsin(c*x))^(3/2),x, algorithm="maxima" 
)
 

Output:

-integrate((c^2*d*x^2 - d)*x^2/(b*arcsin(c*x) + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {x^2 \left (d-c^2 d x^2\right )}{(a+b \arcsin (c x))^{3/2}} \, dx=\int { -\frac {{\left (c^{2} d x^{2} - d\right )} x^{2}}{{\left (b \arcsin \left (c x\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^2*(-c^2*d*x^2+d)/(a+b*arcsin(c*x))^(3/2),x, algorithm="giac")
 

Output:

integrate(-(c^2*d*x^2 - d)*x^2/(b*arcsin(c*x) + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \left (d-c^2 d x^2\right )}{(a+b \arcsin (c x))^{3/2}} \, dx=\int \frac {x^2\,\left (d-c^2\,d\,x^2\right )}{{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^{3/2}} \,d x \] Input:

int((x^2*(d - c^2*d*x^2))/(a + b*asin(c*x))^(3/2),x)
 

Output:

int((x^2*(d - c^2*d*x^2))/(a + b*asin(c*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {x^2 \left (d-c^2 d x^2\right )}{(a+b \arcsin (c x))^{3/2}} \, dx=d \left (-\left (\int \frac {\sqrt {\mathit {asin} \left (c x \right ) b +a}\, x^{4}}{\mathit {asin} \left (c x \right )^{2} b^{2}+2 \mathit {asin} \left (c x \right ) a b +a^{2}}d x \right ) c^{2}+\int \frac {\sqrt {\mathit {asin} \left (c x \right ) b +a}\, x^{2}}{\mathit {asin} \left (c x \right )^{2} b^{2}+2 \mathit {asin} \left (c x \right ) a b +a^{2}}d x \right ) \] Input:

int(x^2*(-c^2*d*x^2+d)/(a+b*asin(c*x))^(3/2),x)
 

Output:

d*( - int((sqrt(asin(c*x)*b + a)*x**4)/(asin(c*x)**2*b**2 + 2*asin(c*x)*a* 
b + a**2),x)*c**2 + int((sqrt(asin(c*x)*b + a)*x**2)/(asin(c*x)**2*b**2 + 
2*asin(c*x)*a*b + a**2),x))