\(\int \frac {x^2 (a+b \arcsin (c x))}{d+e x^2} \, dx\) [452]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F]
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 579 \[ \int \frac {x^2 (a+b \arcsin (c x))}{d+e x^2} \, dx=\frac {a x}{e}+\frac {b \sqrt {1-c^2 x^2}}{c e}+\frac {b x \arcsin (c x)}{e}+\frac {\sqrt {-d} (a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}-\frac {\sqrt {-d} (a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}+\frac {\sqrt {-d} (a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}-\frac {\sqrt {-d} (a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}+\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}-\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}+\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}-\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 e^{3/2}} \] Output:

a*x/e+b*(-c^2*x^2+1)^(1/2)/c/e+b*x*arcsin(c*x)/e+1/2*(-d)^(1/2)*(a+b*arcsi 
n(c*x))*ln(1-e^(1/2)*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/2)-(c^2*d+e)^ 
(1/2)))/e^(3/2)-1/2*(-d)^(1/2)*(a+b*arcsin(c*x))*ln(1+e^(1/2)*(I*c*x+(-c^2 
*x^2+1)^(1/2))/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/e^(3/2)+1/2*(-d)^(1/2)*(a 
+b*arcsin(c*x))*ln(1-e^(1/2)*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/2)+(c 
^2*d+e)^(1/2)))/e^(3/2)-1/2*(-d)^(1/2)*(a+b*arcsin(c*x))*ln(1+e^(1/2)*(I*c 
*x+(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/2)+(c^2*d+e)^(1/2)))/e^(3/2)+1/2*I*b*( 
-d)^(1/2)*polylog(2,-e^(1/2)*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/2)-(c 
^2*d+e)^(1/2)))/e^(3/2)-1/2*I*b*(-d)^(1/2)*polylog(2,e^(1/2)*(I*c*x+(-c^2* 
x^2+1)^(1/2))/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/e^(3/2)+1/2*I*b*(-d)^(1/2) 
*polylog(2,-e^(1/2)*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/2)+(c^2*d+e)^( 
1/2)))/e^(3/2)-1/2*I*b*(-d)^(1/2)*polylog(2,e^(1/2)*(I*c*x+(-c^2*x^2+1)^(1 
/2))/(I*c*(-d)^(1/2)+(c^2*d+e)^(1/2)))/e^(3/2)
 

Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 456, normalized size of antiderivative = 0.79 \[ \int \frac {x^2 (a+b \arcsin (c x))}{d+e x^2} \, dx=\frac {4 a c \sqrt {e} x-4 a c \sqrt {d} \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )+b \left (4 \sqrt {e} \left (\sqrt {1-c^2 x^2}+c x \arcsin (c x)\right )+c \sqrt {d} \left (\arcsin (c x) \left (\arcsin (c x)+2 i \left (\log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}-\sqrt {c^2 d+e}}\right )+\log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )\right )+2 \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{-c \sqrt {d}+\sqrt {c^2 d+e}}\right )+2 \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )-c \sqrt {d} \left (\arcsin (c x) \left (\arcsin (c x)+2 i \left (\log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{-c \sqrt {d}+\sqrt {c^2 d+e}}\right )+\log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )\right )+2 \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}-\sqrt {c^2 d+e}}\right )+2 \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )\right )}{4 c e^{3/2}} \] Input:

Integrate[(x^2*(a + b*ArcSin[c*x]))/(d + e*x^2),x]
 

Output:

(4*a*c*Sqrt[e]*x - 4*a*c*Sqrt[d]*ArcTan[(Sqrt[e]*x)/Sqrt[d]] + b*(4*Sqrt[e 
]*(Sqrt[1 - c^2*x^2] + c*x*ArcSin[c*x]) + c*Sqrt[d]*(ArcSin[c*x]*(ArcSin[c 
*x] + (2*I)*(Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] - Sqrt[c^2*d + 
 e])] + Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2*d + e])] 
)) + 2*PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x]))/(-(c*Sqrt[d]) + Sqrt[c^2*d + 
 e])] + 2*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2*d 
 + e]))]) - c*Sqrt[d]*(ArcSin[c*x]*(ArcSin[c*x] + (2*I)*(Log[1 + (Sqrt[e]* 
E^(I*ArcSin[c*x]))/(-(c*Sqrt[d]) + Sqrt[c^2*d + e])] + Log[1 - (Sqrt[e]*E^ 
(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2*d + e])])) + 2*PolyLog[2, (Sqrt[e]* 
E^(I*ArcSin[c*x]))/(c*Sqrt[d] - Sqrt[c^2*d + e])] + 2*PolyLog[2, (Sqrt[e]* 
E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2*d + e])])))/(4*c*e^(3/2))
 

Rubi [A] (verified)

Time = 1.41 (sec) , antiderivative size = 579, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {5232, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 (a+b \arcsin (c x))}{d+e x^2} \, dx\)

\(\Big \downarrow \) 5232

\(\displaystyle \int \left (\frac {a+b \arcsin (c x)}{e}-\frac {d (a+b \arcsin (c x))}{e \left (d+e x^2\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {-d} (a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{-\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 e^{3/2}}-\frac {\sqrt {-d} (a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{-\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 e^{3/2}}+\frac {\sqrt {-d} (a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 e^{3/2}}-\frac {\sqrt {-d} (a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 e^{3/2}}+\frac {a x}{e}+\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {d c^2+e}}\right )}{2 e^{3/2}}-\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {d c^2+e}}\right )}{2 e^{3/2}}+\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i \sqrt {-d} c+\sqrt {d c^2+e}}\right )}{2 e^{3/2}}-\frac {i b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i \sqrt {-d} c+\sqrt {d c^2+e}}\right )}{2 e^{3/2}}+\frac {b x \arcsin (c x)}{e}+\frac {b \sqrt {1-c^2 x^2}}{c e}\)

Input:

Int[(x^2*(a + b*ArcSin[c*x]))/(d + e*x^2),x]
 

Output:

(a*x)/e + (b*Sqrt[1 - c^2*x^2])/(c*e) + (b*x*ArcSin[c*x])/e + (Sqrt[-d]*(a 
 + b*ArcSin[c*x])*Log[1 - (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt 
[c^2*d + e])])/(2*e^(3/2)) - (Sqrt[-d]*(a + b*ArcSin[c*x])*Log[1 + (Sqrt[e 
]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])])/(2*e^(3/2)) + (Sqr 
t[-d]*(a + b*ArcSin[c*x])*Log[1 - (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d 
] + Sqrt[c^2*d + e])])/(2*e^(3/2)) - (Sqrt[-d]*(a + b*ArcSin[c*x])*Log[1 + 
 (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])])/(2*e^(3/2) 
) + ((I/2)*b*Sqrt[-d]*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[- 
d] - Sqrt[c^2*d + e]))])/e^(3/2) - ((I/2)*b*Sqrt[-d]*PolyLog[2, (Sqrt[e]*E 
^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])])/e^(3/2) + ((I/2)*b*Sq 
rt[-d]*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d 
 + e]))])/e^(3/2) - ((I/2)*b*Sqrt[-d]*PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x] 
))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])])/e^(3/2)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5232
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSin[c*x])^n, ( 
f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d + 
 e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 320.76 (sec) , antiderivative size = 285, normalized size of antiderivative = 0.49

method result size
parts \(\frac {a x}{e}-\frac {a d \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{e \sqrt {d e}}+\frac {b \sqrt {-c^{2} x^{2}+1}}{c e}+\frac {b x \arcsin \left (c x \right )}{e}-\frac {b c d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e -2 c^{2} d -e \right )}\right )}{2 e}-\frac {b c d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\textit {\_R1} \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} e -2 c^{2} d -e}\right )}{2 e}\) \(285\)
derivativedivides \(\frac {\frac {a \,c^{3} x}{e}-\frac {a \,c^{3} d \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{e \sqrt {d e}}+\frac {b \,c^{2} \sqrt {-c^{2} x^{2}+1}}{e}+\frac {b \,c^{3} \arcsin \left (c x \right ) x}{e}+\frac {b \,c^{4} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (-\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{2 e}+\frac {b \,c^{4} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\textit {\_R1} \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{-\textit {\_R1}^{2} e +2 c^{2} d +e}\right )}{2 e}}{c^{3}}\) \(300\)
default \(\frac {\frac {a \,c^{3} x}{e}-\frac {a \,c^{3} d \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{e \sqrt {d e}}+\frac {b \,c^{2} \sqrt {-c^{2} x^{2}+1}}{e}+\frac {b \,c^{3} \arcsin \left (c x \right ) x}{e}+\frac {b \,c^{4} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (-\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{2 e}+\frac {b \,c^{4} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\textit {\_R1} \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{-\textit {\_R1}^{2} e +2 c^{2} d +e}\right )}{2 e}}{c^{3}}\) \(300\)

Input:

int(x^2*(a+b*arcsin(c*x))/(e*x^2+d),x,method=_RETURNVERBOSE)
 

Output:

a*x/e-a*d/e/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))+b*(-c^2*x^2+1)^(1/2)/c/e+b 
*x*arcsin(c*x)/e-1/2*b*c/e*d*sum(1/_R1/(_R1^2*e-2*c^2*d-e)*(I*arcsin(c*x)* 
ln((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/_R1)+dilog((_R1-I*c*x-(-c^2*x^2+1)^(1/2) 
)/_R1)),_R1=RootOf(e*_Z^4+(-4*c^2*d-2*e)*_Z^2+e))-1/2*b*c/e*d*sum(_R1/(_R1 
^2*e-2*c^2*d-e)*(I*arcsin(c*x)*ln((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/_R1)+dilo 
g((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/_R1)),_R1=RootOf(e*_Z^4+(-4*c^2*d-2*e)*_Z 
^2+e))
 

Fricas [F]

\[ \int \frac {x^2 (a+b \arcsin (c x))}{d+e x^2} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )} x^{2}}{e x^{2} + d} \,d x } \] Input:

integrate(x^2*(a+b*arcsin(c*x))/(e*x^2+d),x, algorithm="fricas")
 

Output:

integral((b*x^2*arcsin(c*x) + a*x^2)/(e*x^2 + d), x)
 

Sympy [F]

\[ \int \frac {x^2 (a+b \arcsin (c x))}{d+e x^2} \, dx=\int \frac {x^{2} \left (a + b \operatorname {asin}{\left (c x \right )}\right )}{d + e x^{2}}\, dx \] Input:

integrate(x**2*(a+b*asin(c*x))/(e*x**2+d),x)
 

Output:

Integral(x**2*(a + b*asin(c*x))/(d + e*x**2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^2 (a+b \arcsin (c x))}{d+e x^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(x^2*(a+b*arcsin(c*x))/(e*x^2+d),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F(-2)]

Exception generated. \[ \int \frac {x^2 (a+b \arcsin (c x))}{d+e x^2} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(x^2*(a+b*arcsin(c*x))/(e*x^2+d),x, algorithm="giac")
 

Output:

Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 (a+b \arcsin (c x))}{d+e x^2} \, dx=\int \frac {x^2\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}{e\,x^2+d} \,d x \] Input:

int((x^2*(a + b*asin(c*x)))/(d + e*x^2),x)
 

Output:

int((x^2*(a + b*asin(c*x)))/(d + e*x^2), x)
 

Reduce [F]

\[ \int \frac {x^2 (a+b \arcsin (c x))}{d+e x^2} \, dx=\frac {\mathit {asin} \left (c x \right ) b c e x -\sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a c +\sqrt {-c^{2} x^{2}+1}\, b e -\left (\int \frac {\mathit {asin} \left (c x \right )}{e \,x^{2}+d}d x \right ) b c d e +a c e x}{c \,e^{2}} \] Input:

int(x^2*(a+b*asin(c*x))/(e*x^2+d),x)
 

Output:

(asin(c*x)*b*c*e*x - sqrt(e)*sqrt(d)*atan((e*x)/(sqrt(e)*sqrt(d)))*a*c + s 
qrt( - c**2*x**2 + 1)*b*e - int(asin(c*x)/(d + e*x**2),x)*b*c*d*e + a*c*e* 
x)/(c*e**2)