\(\int \frac {a+b \arcsin (c x)}{d+e x^2} \, dx\) [454]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F]
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 541 \[ \int \frac {a+b \arcsin (c x)}{d+e x^2} \, dx=\frac {(a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {(a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}} \] Output:

1/2*(a+b*arcsin(c*x))*ln(1-e^(1/2)*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1 
/2)-(c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(1/2)-1/2*(a+b*arcsin(c*x))*ln(1+e^(1/2 
)*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(1/2)/ 
e^(1/2)+1/2*(a+b*arcsin(c*x))*ln(1-e^(1/2)*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c 
*(-d)^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(1/2)-1/2*(a+b*arcsin(c*x))*ln( 
1+e^(1/2)*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/2)+(c^2*d+e)^(1/2)))/(-d 
)^(1/2)/e^(1/2)+1/2*I*b*polylog(2,-e^(1/2)*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c 
*(-d)^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(1/2)-1/2*I*b*polylog(2,e^(1/2) 
*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(1/2)/e 
^(1/2)+1/2*I*b*polylog(2,-e^(1/2)*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/ 
2)+(c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(1/2)-1/2*I*b*polylog(2,e^(1/2)*(I*c*x+( 
-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(1/2)
 

Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 490, normalized size of antiderivative = 0.91 \[ \int \frac {a+b \arcsin (c x)}{d+e x^2} \, dx=\frac {2 a \sqrt {-d} \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )-b \sqrt {d} \arcsin (c x) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )+b \sqrt {d} \arcsin (c x) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{-i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )+b \sqrt {d} \arcsin (c x) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )-b \sqrt {d} \arcsin (c x) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )-i b \sqrt {d} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )+i b \sqrt {d} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{-i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )+i b \sqrt {d} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )-i b \sqrt {d} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d^2} \sqrt {e}} \] Input:

Integrate[(a + b*ArcSin[c*x])/(d + e*x^2),x]
 

Output:

(2*a*Sqrt[-d]*ArcTan[(Sqrt[e]*x)/Sqrt[d]] - b*Sqrt[d]*ArcSin[c*x]*Log[1 + 
(Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])] + b*Sqrt[d]* 
ArcSin[c*x]*Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/((-I)*c*Sqrt[-d] + Sqrt[c^ 
2*d + e])] + b*Sqrt[d]*ArcSin[c*x]*Log[1 - (Sqrt[e]*E^(I*ArcSin[c*x]))/(I* 
c*Sqrt[-d] + Sqrt[c^2*d + e])] - b*Sqrt[d]*ArcSin[c*x]*Log[1 + (Sqrt[e]*E^ 
(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])] - I*b*Sqrt[d]*PolyLog[2 
, (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])] + I*b*Sqrt 
[d]*PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x]))/((-I)*c*Sqrt[-d] + Sqrt[c^2*d + 
 e])] + I*b*Sqrt[d]*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] 
 + Sqrt[c^2*d + e]))] - I*b*Sqrt[d]*PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x])) 
/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])])/(2*Sqrt[-d^2]*Sqrt[e])
 

Rubi [A] (verified)

Time = 1.40 (sec) , antiderivative size = 541, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {5172, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \arcsin (c x)}{d+e x^2} \, dx\)

\(\Big \downarrow \) 5172

\(\displaystyle \int \left (\frac {\sqrt {-d} (a+b \arcsin (c x))}{2 d \left (\sqrt {-d}-\sqrt {e} x\right )}+\frac {\sqrt {-d} (a+b \arcsin (c x))}{2 d \left (\sqrt {-d}+\sqrt {e} x\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {(a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{-\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{-\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {(a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {d c^2+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {d c^2+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i \sqrt {-d} c+\sqrt {d c^2+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i \sqrt {-d} c+\sqrt {d c^2+e}}\right )}{2 \sqrt {-d} \sqrt {e}}\)

Input:

Int[(a + b*ArcSin[c*x])/(d + e*x^2),x]
 

Output:

((a + b*ArcSin[c*x])*Log[1 - (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - S 
qrt[c^2*d + e])])/(2*Sqrt[-d]*Sqrt[e]) - ((a + b*ArcSin[c*x])*Log[1 + (Sqr 
t[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])])/(2*Sqrt[-d]*Sqr 
t[e]) + ((a + b*ArcSin[c*x])*Log[1 - (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt 
[-d] + Sqrt[c^2*d + e])])/(2*Sqrt[-d]*Sqrt[e]) - ((a + b*ArcSin[c*x])*Log[ 
1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])])/(2*Sqrt 
[-d]*Sqrt[e]) + ((I/2)*b*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqr 
t[-d] - Sqrt[c^2*d + e]))])/(Sqrt[-d]*Sqrt[e]) - ((I/2)*b*PolyLog[2, (Sqrt 
[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])])/(Sqrt[-d]*Sqrt[e 
]) + ((I/2)*b*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqr 
t[c^2*d + e]))])/(Sqrt[-d]*Sqrt[e]) - ((I/2)*b*PolyLog[2, (Sqrt[e]*E^(I*Ar 
cSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])])/(Sqrt[-d]*Sqrt[e])
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5172
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x 
_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSin[c*x])^n, (d + e*x^2)^p, x], x 
] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p] && (G 
tQ[p, 0] || IGtQ[n, 0])
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.89 (sec) , antiderivative size = 236, normalized size of antiderivative = 0.44

method result size
parts \(\frac {a \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e}}+\frac {b c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e -2 c^{2} d -e \right )}\right )}{2}+\frac {b c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\textit {\_R1} \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} e -2 c^{2} d -e}\right )}{2}\) \(236\)
derivativedivides \(\frac {\frac {a c \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e}}+b \,c^{2} \left (-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (-\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{2}-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\textit {\_R1} \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{-\textit {\_R1}^{2} e +2 c^{2} d +e}\right )}{2}\right )}{c}\) \(241\)
default \(\frac {\frac {a c \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e}}+b \,c^{2} \left (-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (-\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{2}-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\textit {\_R1} \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{-\textit {\_R1}^{2} e +2 c^{2} d +e}\right )}{2}\right )}{c}\) \(241\)

Input:

int((a+b*arcsin(c*x))/(e*x^2+d),x,method=_RETURNVERBOSE)
 

Output:

a/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))+1/2*b*c*sum(1/_R1/(_R1^2*e-2*c^2*d-e 
)*(I*arcsin(c*x)*ln((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/_R1)+dilog((_R1-I*c*x-( 
-c^2*x^2+1)^(1/2))/_R1)),_R1=RootOf(e*_Z^4+(-4*c^2*d-2*e)*_Z^2+e))+1/2*b*c 
*sum(_R1/(_R1^2*e-2*c^2*d-e)*(I*arcsin(c*x)*ln((_R1-I*c*x-(-c^2*x^2+1)^(1/ 
2))/_R1)+dilog((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/_R1)),_R1=RootOf(e*_Z^4+(-4* 
c^2*d-2*e)*_Z^2+e))
 

Fricas [F]

\[ \int \frac {a+b \arcsin (c x)}{d+e x^2} \, dx=\int { \frac {b \arcsin \left (c x\right ) + a}{e x^{2} + d} \,d x } \] Input:

integrate((a+b*arcsin(c*x))/(e*x^2+d),x, algorithm="fricas")
 

Output:

integral((b*arcsin(c*x) + a)/(e*x^2 + d), x)
 

Sympy [F]

\[ \int \frac {a+b \arcsin (c x)}{d+e x^2} \, dx=\int \frac {a + b \operatorname {asin}{\left (c x \right )}}{d + e x^{2}}\, dx \] Input:

integrate((a+b*asin(c*x))/(e*x**2+d),x)
 

Output:

Integral((a + b*asin(c*x))/(d + e*x**2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \arcsin (c x)}{d+e x^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((a+b*arcsin(c*x))/(e*x^2+d),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F(-2)]

Exception generated. \[ \int \frac {a+b \arcsin (c x)}{d+e x^2} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate((a+b*arcsin(c*x))/(e*x^2+d),x, algorithm="giac")
 

Output:

Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \arcsin (c x)}{d+e x^2} \, dx=\int \frac {a+b\,\mathrm {asin}\left (c\,x\right )}{e\,x^2+d} \,d x \] Input:

int((a + b*asin(c*x))/(d + e*x^2),x)
 

Output:

int((a + b*asin(c*x))/(d + e*x^2), x)
 

Reduce [F]

\[ \int \frac {a+b \arcsin (c x)}{d+e x^2} \, dx=\frac {\sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a +\left (\int \frac {\mathit {asin} \left (c x \right )}{e \,x^{2}+d}d x \right ) b d e}{d e} \] Input:

int((a+b*asin(c*x))/(e*x^2+d),x)
 

Output:

(sqrt(e)*sqrt(d)*atan((e*x)/(sqrt(e)*sqrt(d)))*a + int(asin(c*x)/(d + e*x* 
*2),x)*b*d*e)/(d*e)