\(\int \frac {a+b \arcsin (c x)}{x^2 (d+e x^2)} \, dx\) [456]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F]
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 579 \[ \int \frac {a+b \arcsin (c x)}{x^2 \left (d+e x^2\right )} \, dx=-\frac {a+b \arcsin (c x)}{d x}-\frac {b c \text {arctanh}\left (\sqrt {1-c^2 x^2}\right )}{d}+\frac {\sqrt {e} (a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} (a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {i b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {i b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {i b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {i b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 (-d)^{3/2}} \] Output:

-(a+b*arcsin(c*x))/d/x-b*c*arctanh((-c^2*x^2+1)^(1/2))/d+1/2*e^(1/2)*(a+b* 
arcsin(c*x))*ln(1-e^(1/2)*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/2)-(c^2* 
d+e)^(1/2)))/(-d)^(3/2)-1/2*e^(1/2)*(a+b*arcsin(c*x))*ln(1+e^(1/2)*(I*c*x+ 
(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(3/2)+1/2*e^(1/ 
2)*(a+b*arcsin(c*x))*ln(1-e^(1/2)*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/ 
2)+(c^2*d+e)^(1/2)))/(-d)^(3/2)-1/2*e^(1/2)*(a+b*arcsin(c*x))*ln(1+e^(1/2) 
*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(3/2)+1 
/2*I*b*e^(1/2)*polylog(2,-e^(1/2)*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/ 
2)-(c^2*d+e)^(1/2)))/(-d)^(3/2)-1/2*I*b*e^(1/2)*polylog(2,e^(1/2)*(I*c*x+( 
-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(3/2)+1/2*I*b*e^ 
(1/2)*polylog(2,-e^(1/2)*(I*c*x+(-c^2*x^2+1)^(1/2))/(I*c*(-d)^(1/2)+(c^2*d 
+e)^(1/2)))/(-d)^(3/2)-1/2*I*b*e^(1/2)*polylog(2,e^(1/2)*(I*c*x+(-c^2*x^2+ 
1)^(1/2))/(I*c*(-d)^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(3/2)
 

Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 455, normalized size of antiderivative = 0.79 \[ \int \frac {a+b \arcsin (c x)}{x^2 \left (d+e x^2\right )} \, dx=\frac {-4 a \sqrt {d}-4 a \sqrt {e} x \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )-4 b \sqrt {d} \left (\arcsin (c x)+c x \text {arctanh}\left (\sqrt {1-c^2 x^2}\right )\right )+b \sqrt {e} x \left (\arcsin (c x) \left (\arcsin (c x)+2 i \left (\log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}-\sqrt {c^2 d+e}}\right )+\log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )\right )+2 \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{-c \sqrt {d}+\sqrt {c^2 d+e}}\right )+2 \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )-b \sqrt {e} x \left (\arcsin (c x) \left (\arcsin (c x)+2 i \left (\log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{-c \sqrt {d}+\sqrt {c^2 d+e}}\right )+\log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )\right )+2 \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}-\sqrt {c^2 d+e}}\right )+2 \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )}{4 d^{3/2} x} \] Input:

Integrate[(a + b*ArcSin[c*x])/(x^2*(d + e*x^2)),x]
 

Output:

(-4*a*Sqrt[d] - 4*a*Sqrt[e]*x*ArcTan[(Sqrt[e]*x)/Sqrt[d]] - 4*b*Sqrt[d]*(A 
rcSin[c*x] + c*x*ArcTanh[Sqrt[1 - c^2*x^2]]) + b*Sqrt[e]*x*(ArcSin[c*x]*(A 
rcSin[c*x] + (2*I)*(Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] - Sqrt[ 
c^2*d + e])] + Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2*d 
 + e])])) + 2*PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x]))/(-(c*Sqrt[d]) + Sqrt[ 
c^2*d + e])] + 2*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqr 
t[c^2*d + e]))]) - b*Sqrt[e]*x*(ArcSin[c*x]*(ArcSin[c*x] + (2*I)*(Log[1 + 
(Sqrt[e]*E^(I*ArcSin[c*x]))/(-(c*Sqrt[d]) + Sqrt[c^2*d + e])] + Log[1 - (S 
qrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2*d + e])])) + 2*PolyLog[2, 
(Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] - Sqrt[c^2*d + e])] + 2*PolyLog[2, 
(Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2*d + e])]))/(4*d^(3/2)*x)
 

Rubi [A] (verified)

Time = 1.55 (sec) , antiderivative size = 579, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {5232, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \arcsin (c x)}{x^2 \left (d+e x^2\right )} \, dx\)

\(\Big \downarrow \) 5232

\(\displaystyle \int \left (\frac {a+b \arcsin (c x)}{d x^2}-\frac {e (a+b \arcsin (c x))}{d \left (d+e x^2\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {e} (a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{-\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{-\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} (a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} (a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 (-d)^{3/2}}-\frac {a+b \arcsin (c x)}{d x}+\frac {i b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {d c^2+e}}\right )}{2 (-d)^{3/2}}-\frac {i b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {d c^2+e}}\right )}{2 (-d)^{3/2}}+\frac {i b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i \sqrt {-d} c+\sqrt {d c^2+e}}\right )}{2 (-d)^{3/2}}-\frac {i b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i \sqrt {-d} c+\sqrt {d c^2+e}}\right )}{2 (-d)^{3/2}}-\frac {b c \text {arctanh}\left (\sqrt {1-c^2 x^2}\right )}{d}\)

Input:

Int[(a + b*ArcSin[c*x])/(x^2*(d + e*x^2)),x]
 

Output:

-((a + b*ArcSin[c*x])/(d*x)) - (b*c*ArcTanh[Sqrt[1 - c^2*x^2]])/d + (Sqrt[ 
e]*(a + b*ArcSin[c*x])*Log[1 - (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - 
 Sqrt[c^2*d + e])])/(2*(-d)^(3/2)) - (Sqrt[e]*(a + b*ArcSin[c*x])*Log[1 + 
(Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])])/(2*(-d)^(3/ 
2)) + (Sqrt[e]*(a + b*ArcSin[c*x])*Log[1 - (Sqrt[e]*E^(I*ArcSin[c*x]))/(I* 
c*Sqrt[-d] + Sqrt[c^2*d + e])])/(2*(-d)^(3/2)) - (Sqrt[e]*(a + b*ArcSin[c* 
x])*Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])]) 
/(2*(-d)^(3/2)) + ((I/2)*b*Sqrt[e]*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]) 
)/(I*c*Sqrt[-d] - Sqrt[c^2*d + e]))])/(-d)^(3/2) - ((I/2)*b*Sqrt[e]*PolyLo 
g[2, (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])])/(-d)^( 
3/2) + ((I/2)*b*Sqrt[e]*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt 
[-d] + Sqrt[c^2*d + e]))])/(-d)^(3/2) - ((I/2)*b*Sqrt[e]*PolyLog[2, (Sqrt[ 
e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])])/(-d)^(3/2)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5232
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSin[c*x])^n, ( 
f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d + 
 e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 379.01 (sec) , antiderivative size = 363, normalized size of antiderivative = 0.63

method result size
parts \(-\frac {a e \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{d \sqrt {d e}}-\frac {a}{d x}+b c \left (-\frac {\arcsin \left (c x \right )}{d c x}+\frac {e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (\textit {\_R1}^{2} e -4 c^{2} d -e \right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e -2 c^{2} d -e \right )}\right )}{8 d^{2} c^{2}}-\frac {e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (4 \textit {\_R1}^{2} c^{2} d +\textit {\_R1}^{2} e -e \right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} e -2 c^{2} d -e \right )}\right )}{8 d^{2} c^{2}}-\frac {\ln \left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d}+\frac {\ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-1\right )}{d}\right )\) \(363\)
derivativedivides \(c \left (-\frac {a}{d c x}-\frac {a e \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{c d \sqrt {d e}}-\frac {b \arcsin \left (c x \right )}{c x d}-\frac {b \ln \left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d}+\frac {b e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (-\textit {\_R1}^{2} e +4 c^{2} d +e \right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (-\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}+\frac {b e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (4 \textit {\_R1}^{2} c^{2} d +\textit {\_R1}^{2} e -e \right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (-\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}+\frac {b \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-1\right )}{d}\right )\) \(369\)
default \(c \left (-\frac {a}{d c x}-\frac {a e \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{c d \sqrt {d e}}-\frac {b \arcsin \left (c x \right )}{c x d}-\frac {b \ln \left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d}+\frac {b e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (-\textit {\_R1}^{2} e +4 c^{2} d +e \right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (-\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}+\frac {b e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (4 \textit {\_R1}^{2} c^{2} d +\textit {\_R1}^{2} e -e \right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (-\textit {\_R1}^{2} e +2 c^{2} d +e \right )}\right )}{8 c^{2} d^{2}}+\frac {b \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-1\right )}{d}\right )\) \(369\)

Input:

int((a+b*arcsin(c*x))/x^2/(e*x^2+d),x,method=_RETURNVERBOSE)
 

Output:

-a*e/d/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))-a/d/x+b*c*(-arcsin(c*x)/d/c/x+1 
/8/d^2*e*sum((_R1^2*e-4*c^2*d-e)/_R1/(_R1^2*e-2*c^2*d-e)*(I*arcsin(c*x)*ln 
((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/_R1)+dilog((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/ 
_R1)),_R1=RootOf(e*_Z^4+(-4*c^2*d-2*e)*_Z^2+e))/c^2-1/8/d^2*e*sum((4*_R1^2 
*c^2*d+_R1^2*e-e)/_R1/(_R1^2*e-2*c^2*d-e)*(I*arcsin(c*x)*ln((_R1-I*c*x-(-c 
^2*x^2+1)^(1/2))/_R1)+dilog((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/_R1)),_R1=RootO 
f(e*_Z^4+(-4*c^2*d-2*e)*_Z^2+e))/c^2-1/d*ln(1+I*c*x+(-c^2*x^2+1)^(1/2))+1/ 
d*ln(I*c*x+(-c^2*x^2+1)^(1/2)-1))
 

Fricas [F]

\[ \int \frac {a+b \arcsin (c x)}{x^2 \left (d+e x^2\right )} \, dx=\int { \frac {b \arcsin \left (c x\right ) + a}{{\left (e x^{2} + d\right )} x^{2}} \,d x } \] Input:

integrate((a+b*arcsin(c*x))/x^2/(e*x^2+d),x, algorithm="fricas")
 

Output:

integral((b*arcsin(c*x) + a)/(e*x^4 + d*x^2), x)
 

Sympy [F]

\[ \int \frac {a+b \arcsin (c x)}{x^2 \left (d+e x^2\right )} \, dx=\int \frac {a + b \operatorname {asin}{\left (c x \right )}}{x^{2} \left (d + e x^{2}\right )}\, dx \] Input:

integrate((a+b*asin(c*x))/x**2/(e*x**2+d),x)
 

Output:

Integral((a + b*asin(c*x))/(x**2*(d + e*x**2)), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \arcsin (c x)}{x^2 \left (d+e x^2\right )} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((a+b*arcsin(c*x))/x^2/(e*x^2+d),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F(-2)]

Exception generated. \[ \int \frac {a+b \arcsin (c x)}{x^2 \left (d+e x^2\right )} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate((a+b*arcsin(c*x))/x^2/(e*x^2+d),x, algorithm="giac")
 

Output:

Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \arcsin (c x)}{x^2 \left (d+e x^2\right )} \, dx=\int \frac {a+b\,\mathrm {asin}\left (c\,x\right )}{x^2\,\left (e\,x^2+d\right )} \,d x \] Input:

int((a + b*asin(c*x))/(x^2*(d + e*x^2)),x)
 

Output:

int((a + b*asin(c*x))/(x^2*(d + e*x^2)), x)
 

Reduce [F]

\[ \int \frac {a+b \arcsin (c x)}{x^2 \left (d+e x^2\right )} \, dx=\frac {-\sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a x +\left (\int \frac {\mathit {asin} \left (c x \right )}{e \,x^{4}+d \,x^{2}}d x \right ) b \,d^{2} x -a d}{d^{2} x} \] Input:

int((a+b*asin(c*x))/x^2/(e*x^2+d),x)
 

Output:

( - sqrt(e)*sqrt(d)*atan((e*x)/(sqrt(e)*sqrt(d)))*a*x + int(asin(c*x)/(d*x 
**2 + e*x**4),x)*b*d**2*x - a*d)/(d**2*x)