\(\int \frac {x^2 (a+b \arcsin (c x))}{(d-c^2 d x^2)^2} \, dx\) [39]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 144 \[ \int \frac {x^2 (a+b \arcsin (c x))}{\left (d-c^2 d x^2\right )^2} \, dx=-\frac {b}{2 c^3 d^2 \sqrt {1-c^2 x^2}}+\frac {x (a+b \arcsin (c x))}{2 c^2 d^2 \left (1-c^2 x^2\right )}+\frac {i (a+b \arcsin (c x)) \arctan \left (e^{i \arcsin (c x)}\right )}{c^3 d^2}-\frac {i b \operatorname {PolyLog}\left (2,-i e^{i \arcsin (c x)}\right )}{2 c^3 d^2}+\frac {i b \operatorname {PolyLog}\left (2,i e^{i \arcsin (c x)}\right )}{2 c^3 d^2} \] Output:

-1/2*b/c^3/d^2/(-c^2*x^2+1)^(1/2)+1/2*x*(a+b*arcsin(c*x))/c^2/d^2/(-c^2*x^ 
2+1)+I*(a+b*arcsin(c*x))*arctan(I*c*x+(-c^2*x^2+1)^(1/2))/c^3/d^2-1/2*I*b* 
polylog(2,-I*(I*c*x+(-c^2*x^2+1)^(1/2)))/c^3/d^2+1/2*I*b*polylog(2,I*(I*c* 
x+(-c^2*x^2+1)^(1/2)))/c^3/d^2
 

Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(463\) vs. \(2(144)=288\).

Time = 0.35 (sec) , antiderivative size = 463, normalized size of antiderivative = 3.22 \[ \int \frac {x^2 (a+b \arcsin (c x))}{\left (d-c^2 d x^2\right )^2} \, dx=-\frac {a x}{2 c^2 d^2 \left (-1+c^2 x^2\right )}+\frac {a \log (1-c x)}{4 c^3 d^2}-\frac {a \log (1+c x)}{4 c^3 d^2}+\frac {b \left (\frac {\sqrt {1-c^2 x^2}-\arcsin (c x)}{4 c^3 (-1+c x)}-\frac {\sqrt {1-c^2 x^2}+\arcsin (c x)}{4 c^2 \left (c+c^2 x\right )}+\frac {\frac {3 i \pi \arcsin (c x)}{2 c}-\frac {i \arcsin (c x)^2}{2 c}+\frac {2 \pi \log \left (1+e^{-i \arcsin (c x)}\right )}{c}-\frac {\pi \log \left (1+i e^{i \arcsin (c x)}\right )}{c}+\frac {2 \arcsin (c x) \log \left (1+i e^{i \arcsin (c x)}\right )}{c}-\frac {2 \pi \log \left (\cos \left (\frac {1}{2} \arcsin (c x)\right )\right )}{c}+\frac {\pi \log \left (-\cos \left (\frac {1}{4} (\pi +2 \arcsin (c x))\right )\right )}{c}-\frac {2 i \operatorname {PolyLog}\left (2,-i e^{i \arcsin (c x)}\right )}{c}}{4 c^2}-\frac {\frac {i \pi \arcsin (c x)}{2 c}-\frac {i \arcsin (c x)^2}{2 c}+\frac {2 \pi \log \left (1+e^{-i \arcsin (c x)}\right )}{c}+\frac {\pi \log \left (1-i e^{i \arcsin (c x)}\right )}{c}+\frac {2 \arcsin (c x) \log \left (1-i e^{i \arcsin (c x)}\right )}{c}-\frac {2 \pi \log \left (\cos \left (\frac {1}{2} \arcsin (c x)\right )\right )}{c}-\frac {\pi \log \left (\sin \left (\frac {1}{4} (\pi +2 \arcsin (c x))\right )\right )}{c}-\frac {2 i \operatorname {PolyLog}\left (2,i e^{i \arcsin (c x)}\right )}{c}}{4 c^2}\right )}{d^2} \] Input:

Integrate[(x^2*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^2,x]
 

Output:

-1/2*(a*x)/(c^2*d^2*(-1 + c^2*x^2)) + (a*Log[1 - c*x])/(4*c^3*d^2) - (a*Lo 
g[1 + c*x])/(4*c^3*d^2) + (b*((Sqrt[1 - c^2*x^2] - ArcSin[c*x])/(4*c^3*(-1 
 + c*x)) - (Sqrt[1 - c^2*x^2] + ArcSin[c*x])/(4*c^2*(c + c^2*x)) + ((((3*I 
)/2)*Pi*ArcSin[c*x])/c - ((I/2)*ArcSin[c*x]^2)/c + (2*Pi*Log[1 + E^((-I)*A 
rcSin[c*x])])/c - (Pi*Log[1 + I*E^(I*ArcSin[c*x])])/c + (2*ArcSin[c*x]*Log 
[1 + I*E^(I*ArcSin[c*x])])/c - (2*Pi*Log[Cos[ArcSin[c*x]/2]])/c + (Pi*Log[ 
-Cos[(Pi + 2*ArcSin[c*x])/4]])/c - ((2*I)*PolyLog[2, (-I)*E^(I*ArcSin[c*x] 
)])/c)/(4*c^2) - (((I/2)*Pi*ArcSin[c*x])/c - ((I/2)*ArcSin[c*x]^2)/c + (2* 
Pi*Log[1 + E^((-I)*ArcSin[c*x])])/c + (Pi*Log[1 - I*E^(I*ArcSin[c*x])])/c 
+ (2*ArcSin[c*x]*Log[1 - I*E^(I*ArcSin[c*x])])/c - (2*Pi*Log[Cos[ArcSin[c* 
x]/2]])/c - (Pi*Log[Sin[(Pi + 2*ArcSin[c*x])/4]])/c - ((2*I)*PolyLog[2, I* 
E^(I*ArcSin[c*x])])/c)/(4*c^2)))/d^2
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.92, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {5206, 27, 241, 5164, 3042, 4669, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 (a+b \arcsin (c x))}{\left (d-c^2 d x^2\right )^2} \, dx\)

\(\Big \downarrow \) 5206

\(\displaystyle -\frac {\int \frac {a+b \arcsin (c x)}{d \left (1-c^2 x^2\right )}dx}{2 c^2 d}-\frac {b \int \frac {x}{\left (1-c^2 x^2\right )^{3/2}}dx}{2 c d^2}+\frac {x (a+b \arcsin (c x))}{2 c^2 d^2 \left (1-c^2 x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {a+b \arcsin (c x)}{1-c^2 x^2}dx}{2 c^2 d^2}-\frac {b \int \frac {x}{\left (1-c^2 x^2\right )^{3/2}}dx}{2 c d^2}+\frac {x (a+b \arcsin (c x))}{2 c^2 d^2 \left (1-c^2 x^2\right )}\)

\(\Big \downarrow \) 241

\(\displaystyle -\frac {\int \frac {a+b \arcsin (c x)}{1-c^2 x^2}dx}{2 c^2 d^2}+\frac {x (a+b \arcsin (c x))}{2 c^2 d^2 \left (1-c^2 x^2\right )}-\frac {b}{2 c^3 d^2 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5164

\(\displaystyle -\frac {\int \frac {a+b \arcsin (c x)}{\sqrt {1-c^2 x^2}}d\arcsin (c x)}{2 c^3 d^2}+\frac {x (a+b \arcsin (c x))}{2 c^2 d^2 \left (1-c^2 x^2\right )}-\frac {b}{2 c^3 d^2 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int (a+b \arcsin (c x)) \csc \left (\arcsin (c x)+\frac {\pi }{2}\right )d\arcsin (c x)}{2 c^3 d^2}+\frac {x (a+b \arcsin (c x))}{2 c^2 d^2 \left (1-c^2 x^2\right )}-\frac {b}{2 c^3 d^2 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 4669

\(\displaystyle -\frac {-b \int \log \left (1-i e^{i \arcsin (c x)}\right )d\arcsin (c x)+b \int \log \left (1+i e^{i \arcsin (c x)}\right )d\arcsin (c x)-2 i \arctan \left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))}{2 c^3 d^2}+\frac {x (a+b \arcsin (c x))}{2 c^2 d^2 \left (1-c^2 x^2\right )}-\frac {b}{2 c^3 d^2 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 2715

\(\displaystyle -\frac {i b \int e^{-i \arcsin (c x)} \log \left (1-i e^{i \arcsin (c x)}\right )de^{i \arcsin (c x)}-i b \int e^{-i \arcsin (c x)} \log \left (1+i e^{i \arcsin (c x)}\right )de^{i \arcsin (c x)}-2 i \arctan \left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))}{2 c^3 d^2}+\frac {x (a+b \arcsin (c x))}{2 c^2 d^2 \left (1-c^2 x^2\right )}-\frac {b}{2 c^3 d^2 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 2838

\(\displaystyle -\frac {-2 i \arctan \left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))+i b \operatorname {PolyLog}\left (2,-i e^{i \arcsin (c x)}\right )-i b \operatorname {PolyLog}\left (2,i e^{i \arcsin (c x)}\right )}{2 c^3 d^2}+\frac {x (a+b \arcsin (c x))}{2 c^2 d^2 \left (1-c^2 x^2\right )}-\frac {b}{2 c^3 d^2 \sqrt {1-c^2 x^2}}\)

Input:

Int[(x^2*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^2,x]
 

Output:

-1/2*b/(c^3*d^2*Sqrt[1 - c^2*x^2]) + (x*(a + b*ArcSin[c*x]))/(2*c^2*d^2*(1 
 - c^2*x^2)) - ((-2*I)*(a + b*ArcSin[c*x])*ArcTan[E^(I*ArcSin[c*x])] + I*b 
*PolyLog[2, (-I)*E^(I*ArcSin[c*x])] - I*b*PolyLog[2, I*E^(I*ArcSin[c*x])]) 
/(2*c^3*d^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 241
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x^2)^(p + 1)/ 
(2*b*(p + 1)), x] /; FreeQ[{a, b, p}, x] && NeQ[p, -1]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4669
Int[csc[(e_.) + Pi*(k_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol 
] :> Simp[-2*(c + d*x)^m*(ArcTanh[E^(I*k*Pi)*E^(I*(e + f*x))]/f), x] + (-Si 
mp[d*(m/f)   Int[(c + d*x)^(m - 1)*Log[1 - E^(I*k*Pi)*E^(I*(e + f*x))], x], 
 x] + Simp[d*(m/f)   Int[(c + d*x)^(m - 1)*Log[1 + E^(I*k*Pi)*E^(I*(e + f*x 
))], x], x]) /; FreeQ[{c, d, e, f}, x] && IntegerQ[2*k] && IGtQ[m, 0]
 

rule 5164
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbo 
l] :> Simp[1/(c*d)   Subst[Int[(a + b*x)^n*Sec[x], x], x, ArcSin[c*x]], x] 
/; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]
 

rule 5206
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + 
 b*ArcSin[c*x])^n/(2*e*(p + 1))), x] + (-Simp[f^2*((m - 1)/(2*e*(p + 1))) 
 Int[(f*x)^(m - 2)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n, x], x] + Simp 
[b*f*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f*x)^(m - 
 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{ 
a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && IG 
tQ[m, 1]
 
Maple [A] (verified)

Time = 0.35 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.40

method result size
derivativedivides \(\frac {\frac {a \left (-\frac {1}{4 \left (c x +1\right )}-\frac {\ln \left (c x +1\right )}{4}-\frac {1}{4 \left (c x -1\right )}+\frac {\ln \left (c x -1\right )}{4}\right )}{d^{2}}+\frac {b \left (-\frac {c x \arcsin \left (c x \right )-\sqrt {-c^{2} x^{2}+1}}{2 \left (c^{2} x^{2}-1\right )}+\frac {\arcsin \left (c x \right ) \ln \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2}-\frac {\arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2}-\frac {i \operatorname {dilog}\left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2}+\frac {i \operatorname {dilog}\left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2}\right )}{d^{2}}}{c^{3}}\) \(201\)
default \(\frac {\frac {a \left (-\frac {1}{4 \left (c x +1\right )}-\frac {\ln \left (c x +1\right )}{4}-\frac {1}{4 \left (c x -1\right )}+\frac {\ln \left (c x -1\right )}{4}\right )}{d^{2}}+\frac {b \left (-\frac {c x \arcsin \left (c x \right )-\sqrt {-c^{2} x^{2}+1}}{2 \left (c^{2} x^{2}-1\right )}+\frac {\arcsin \left (c x \right ) \ln \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2}-\frac {\arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2}-\frac {i \operatorname {dilog}\left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2}+\frac {i \operatorname {dilog}\left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2}\right )}{d^{2}}}{c^{3}}\) \(201\)
parts \(\frac {a \left (-\frac {1}{4 c^{3} \left (c x -1\right )}+\frac {\ln \left (c x -1\right )}{4 c^{3}}-\frac {1}{4 c^{3} \left (c x +1\right )}-\frac {\ln \left (c x +1\right )}{4 c^{3}}\right )}{d^{2}}+\frac {b \left (-\frac {c x \arcsin \left (c x \right )-\sqrt {-c^{2} x^{2}+1}}{2 \left (c^{2} x^{2}-1\right )}+\frac {\arcsin \left (c x \right ) \ln \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2}-\frac {\arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2}-\frac {i \operatorname {dilog}\left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2}+\frac {i \operatorname {dilog}\left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2}\right )}{d^{2} c^{3}}\) \(212\)

Input:

int(x^2*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^2,x,method=_RETURNVERBOSE)
 

Output:

1/c^3*(a/d^2*(-1/4/(c*x+1)-1/4*ln(c*x+1)-1/4/(c*x-1)+1/4*ln(c*x-1))+b/d^2* 
(-1/2*(c*x*arcsin(c*x)-(-c^2*x^2+1)^(1/2))/(c^2*x^2-1)+1/2*arcsin(c*x)*ln( 
1+I*(I*c*x+(-c^2*x^2+1)^(1/2)))-1/2*arcsin(c*x)*ln(1-I*(I*c*x+(-c^2*x^2+1) 
^(1/2)))-1/2*I*dilog(1+I*(I*c*x+(-c^2*x^2+1)^(1/2)))+1/2*I*dilog(1-I*(I*c* 
x+(-c^2*x^2+1)^(1/2)))))
 

Fricas [F]

\[ \int \frac {x^2 (a+b \arcsin (c x))}{\left (d-c^2 d x^2\right )^2} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )} x^{2}}{{\left (c^{2} d x^{2} - d\right )}^{2}} \,d x } \] Input:

integrate(x^2*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^2,x, algorithm="fricas")
 

Output:

integral((b*x^2*arcsin(c*x) + a*x^2)/(c^4*d^2*x^4 - 2*c^2*d^2*x^2 + d^2), 
x)
 

Sympy [F]

\[ \int \frac {x^2 (a+b \arcsin (c x))}{\left (d-c^2 d x^2\right )^2} \, dx=\frac {\int \frac {a x^{2}}{c^{4} x^{4} - 2 c^{2} x^{2} + 1}\, dx + \int \frac {b x^{2} \operatorname {asin}{\left (c x \right )}}{c^{4} x^{4} - 2 c^{2} x^{2} + 1}\, dx}{d^{2}} \] Input:

integrate(x**2*(a+b*asin(c*x))/(-c**2*d*x**2+d)**2,x)
 

Output:

(Integral(a*x**2/(c**4*x**4 - 2*c**2*x**2 + 1), x) + Integral(b*x**2*asin( 
c*x)/(c**4*x**4 - 2*c**2*x**2 + 1), x))/d**2
 

Maxima [F]

\[ \int \frac {x^2 (a+b \arcsin (c x))}{\left (d-c^2 d x^2\right )^2} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )} x^{2}}{{\left (c^{2} d x^{2} - d\right )}^{2}} \,d x } \] Input:

integrate(x^2*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^2,x, algorithm="maxima")
 

Output:

-1/4*a*(2*x/(c^4*d^2*x^2 - c^2*d^2) + log(c*x + 1)/(c^3*d^2) - log(c*x - 1 
)/(c^3*d^2)) - 1/4*(2*c*x*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + (c^ 
2*x^2 - 1)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))*log(c*x + 1) - (c^2* 
x^2 - 1)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))*log(-c*x + 1) + 4*(c^5 
*d^2*x^2 - c^3*d^2)*integrate(1/4*(2*c*x + (c^2*x^2 - 1)*log(c*x + 1) - (c 
^2*x^2 - 1)*log(-c*x + 1))*sqrt(c*x + 1)*sqrt(-c*x + 1)/(c^6*d^2*x^4 - 2*c 
^4*d^2*x^2 + c^2*d^2), x))*b/(c^5*d^2*x^2 - c^3*d^2)
 

Giac [F]

\[ \int \frac {x^2 (a+b \arcsin (c x))}{\left (d-c^2 d x^2\right )^2} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )} x^{2}}{{\left (c^{2} d x^{2} - d\right )}^{2}} \,d x } \] Input:

integrate(x^2*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^2,x, algorithm="giac")
 

Output:

integrate((b*arcsin(c*x) + a)*x^2/(c^2*d*x^2 - d)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 (a+b \arcsin (c x))}{\left (d-c^2 d x^2\right )^2} \, dx=\int \frac {x^2\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}{{\left (d-c^2\,d\,x^2\right )}^2} \,d x \] Input:

int((x^2*(a + b*asin(c*x)))/(d - c^2*d*x^2)^2,x)
                                                                                    
                                                                                    
 

Output:

int((x^2*(a + b*asin(c*x)))/(d - c^2*d*x^2)^2, x)
 

Reduce [F]

\[ \int \frac {x^2 (a+b \arcsin (c x))}{\left (d-c^2 d x^2\right )^2} \, dx=\frac {4 \left (\int \frac {\mathit {asin} \left (c x \right ) x^{2}}{c^{4} x^{4}-2 c^{2} x^{2}+1}d x \right ) b \,c^{5} x^{2}-4 \left (\int \frac {\mathit {asin} \left (c x \right ) x^{2}}{c^{4} x^{4}-2 c^{2} x^{2}+1}d x \right ) b \,c^{3}+\mathrm {log}\left (c^{2} x -c \right ) a \,c^{2} x^{2}-\mathrm {log}\left (c^{2} x -c \right ) a -\mathrm {log}\left (c^{2} x +c \right ) a \,c^{2} x^{2}+\mathrm {log}\left (c^{2} x +c \right ) a -2 a c x}{4 c^{3} d^{2} \left (c^{2} x^{2}-1\right )} \] Input:

int(x^2*(a+b*asin(c*x))/(-c^2*d*x^2+d)^2,x)
 

Output:

(4*int((asin(c*x)*x**2)/(c**4*x**4 - 2*c**2*x**2 + 1),x)*b*c**5*x**2 - 4*i 
nt((asin(c*x)*x**2)/(c**4*x**4 - 2*c**2*x**2 + 1),x)*b*c**3 + log(c**2*x - 
 c)*a*c**2*x**2 - log(c**2*x - c)*a - log(c**2*x + c)*a*c**2*x**2 + log(c* 
*2*x + c)*a - 2*a*c*x)/(4*c**3*d**2*(c**2*x**2 - 1))