\(\int \frac {(a+b \arcsin (c x))^2}{(d+c d x)^{5/2} \sqrt {e-c e x}} \, dx\) [89]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 896 \[ \int \frac {(a+b \arcsin (c x))^2}{(d+c d x)^{5/2} \sqrt {e-c e x}} \, dx=-\frac {2 b^2 e^2 \left (1-c^2 x^2\right )^2}{3 c (d+c d x)^{5/2} (e-c e x)^{5/2}}+\frac {2 b^2 e^2 x \left (1-c^2 x^2\right )^2}{3 (d+c d x)^{5/2} (e-c e x)^{5/2}}-\frac {b^2 e^2 \left (1-c^2 x^2\right )^{5/2} \arcsin (c x)}{3 c (d+c d x)^{5/2} (e-c e x)^{5/2}}-\frac {b e^2 \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))}{3 c (d+c d x)^{5/2} (e-c e x)^{5/2}}+\frac {2 b e^2 x \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))}{3 (d+c d x)^{5/2} (e-c e x)^{5/2}}-\frac {b c e^2 x^2 \left (1-c^2 x^2\right )^{3/2} (a+b \arcsin (c x))}{3 (d+c d x)^{5/2} (e-c e x)^{5/2}}-\frac {2 e^2 \left (1-c^2 x^2\right ) (a+b \arcsin (c x))^2}{3 c (d+c d x)^{5/2} (e-c e x)^{5/2}}+\frac {e^2 x \left (1-c^2 x^2\right ) (a+b \arcsin (c x))^2}{3 (d+c d x)^{5/2} (e-c e x)^{5/2}}+\frac {c^2 e^2 x^3 \left (1-c^2 x^2\right ) (a+b \arcsin (c x))^2}{3 (d+c d x)^{5/2} (e-c e x)^{5/2}}+\frac {2 e^2 x \left (1-c^2 x^2\right )^2 (a+b \arcsin (c x))^2}{3 (d+c d x)^{5/2} (e-c e x)^{5/2}}-\frac {i e^2 \left (1-c^2 x^2\right )^{5/2} (a+b \arcsin (c x))^2}{3 c (d+c d x)^{5/2} (e-c e x)^{5/2}}-\frac {4 i b e^2 \left (1-c^2 x^2\right )^{5/2} (a+b \arcsin (c x)) \arctan \left (e^{i \arcsin (c x)}\right )}{3 c (d+c d x)^{5/2} (e-c e x)^{5/2}}+\frac {2 b e^2 \left (1-c^2 x^2\right )^{5/2} (a+b \arcsin (c x)) \log \left (1+e^{2 i \arcsin (c x)}\right )}{3 c (d+c d x)^{5/2} (e-c e x)^{5/2}}+\frac {2 i b^2 e^2 \left (1-c^2 x^2\right )^{5/2} \operatorname {PolyLog}\left (2,-i e^{i \arcsin (c x)}\right )}{3 c (d+c d x)^{5/2} (e-c e x)^{5/2}}-\frac {2 i b^2 e^2 \left (1-c^2 x^2\right )^{5/2} \operatorname {PolyLog}\left (2,i e^{i \arcsin (c x)}\right )}{3 c (d+c d x)^{5/2} (e-c e x)^{5/2}}-\frac {i b^2 e^2 \left (1-c^2 x^2\right )^{5/2} \operatorname {PolyLog}\left (2,-e^{2 i \arcsin (c x)}\right )}{3 c (d+c d x)^{5/2} (e-c e x)^{5/2}} \] Output:

-2/3*b^2*e^2*(-c^2*x^2+1)^2/c/(c*d*x+d)^(5/2)/(-c*e*x+e)^(5/2)+2/3*b^2*e^2 
*x*(-c^2*x^2+1)^2/(c*d*x+d)^(5/2)/(-c*e*x+e)^(5/2)-1/3*b^2*e^2*(-c^2*x^2+1 
)^(5/2)*arcsin(c*x)/c/(c*d*x+d)^(5/2)/(-c*e*x+e)^(5/2)-1/3*b*e^2*(-c^2*x^2 
+1)^(3/2)*(a+b*arcsin(c*x))/c/(c*d*x+d)^(5/2)/(-c*e*x+e)^(5/2)+2/3*b*e^2*x 
*(-c^2*x^2+1)^(3/2)*(a+b*arcsin(c*x))/(c*d*x+d)^(5/2)/(-c*e*x+e)^(5/2)-1/3 
*b*c*e^2*x^2*(-c^2*x^2+1)^(3/2)*(a+b*arcsin(c*x))/(c*d*x+d)^(5/2)/(-c*e*x+ 
e)^(5/2)-2/3*e^2*(-c^2*x^2+1)*(a+b*arcsin(c*x))^2/c/(c*d*x+d)^(5/2)/(-c*e* 
x+e)^(5/2)+1/3*e^2*x*(-c^2*x^2+1)*(a+b*arcsin(c*x))^2/(c*d*x+d)^(5/2)/(-c* 
e*x+e)^(5/2)+1/3*c^2*e^2*x^3*(-c^2*x^2+1)*(a+b*arcsin(c*x))^2/(c*d*x+d)^(5 
/2)/(-c*e*x+e)^(5/2)+2/3*e^2*x*(-c^2*x^2+1)^2*(a+b*arcsin(c*x))^2/(c*d*x+d 
)^(5/2)/(-c*e*x+e)^(5/2)+2/3*I*b^2*e^2*(-c^2*x^2+1)^(5/2)*polylog(2,-I*(I* 
c*x+(-c^2*x^2+1)^(1/2)))/c/(c*d*x+d)^(5/2)/(-c*e*x+e)^(5/2)-1/3*I*e^2*(-c^ 
2*x^2+1)^(5/2)*(a+b*arcsin(c*x))^2/c/(c*d*x+d)^(5/2)/(-c*e*x+e)^(5/2)+2/3* 
b*e^2*(-c^2*x^2+1)^(5/2)*(a+b*arcsin(c*x))*ln(1+(I*c*x+(-c^2*x^2+1)^(1/2)) 
^2)/c/(c*d*x+d)^(5/2)/(-c*e*x+e)^(5/2)-4/3*I*b*e^2*(-c^2*x^2+1)^(5/2)*(a+b 
*arcsin(c*x))*arctan(I*c*x+(-c^2*x^2+1)^(1/2))/c/(c*d*x+d)^(5/2)/(-c*e*x+e 
)^(5/2)-2/3*I*b^2*e^2*(-c^2*x^2+1)^(5/2)*polylog(2,I*(I*c*x+(-c^2*x^2+1)^( 
1/2)))/c/(c*d*x+d)^(5/2)/(-c*e*x+e)^(5/2)-1/3*I*b^2*e^2*(-c^2*x^2+1)^(5/2) 
*polylog(2,-(I*c*x+(-c^2*x^2+1)^(1/2))^2)/c/(c*d*x+d)^(5/2)/(-c*e*x+e)^(5/ 
2)
 

Mathematica [A] (verified)

Time = 7.18 (sec) , antiderivative size = 369, normalized size of antiderivative = 0.41 \[ \int \frac {(a+b \arcsin (c x))^2}{(d+c d x)^{5/2} \sqrt {e-c e x}} \, dx=-\frac {\sqrt {d+c d x} \sqrt {e-c e x} \left (\frac {2 a^2 (2+c x)}{(1+c x)^2}+\frac {b^2 \left (\cot \left (\frac {1}{4} (\pi +2 \arcsin (c x))\right ) \left (4+\arcsin (c x)^2 \left (2+\csc ^2\left (\frac {1}{4} (\pi +2 \arcsin (c x))\right )\right )\right )+2 \arcsin (c x) \left (-i \arcsin (c x)+\csc ^2\left (\frac {1}{4} (\pi +2 \arcsin (c x))\right )-4 \log \left (1+i e^{-i \arcsin (c x)}\right )\right )-8 i \operatorname {PolyLog}\left (2,-i e^{-i \arcsin (c x)}\right )\right )}{\sqrt {1-c^2 x^2}}+\frac {2 a b \left (\cos \left (\frac {1}{2} \arcsin (c x)\right ) \left (2+3 \arcsin (c x)-6 \log \left (\cos \left (\frac {1}{2} \arcsin (c x)\right )+\sin \left (\frac {1}{2} \arcsin (c x)\right )\right )\right )+\cos \left (\frac {3}{2} \arcsin (c x)\right ) \left (\arcsin (c x)+2 \log \left (\cos \left (\frac {1}{2} \arcsin (c x)\right )+\sin \left (\frac {1}{2} \arcsin (c x)\right )\right )\right )+2 \left (1+\left (-1+\sqrt {1-c^2 x^2}\right ) \arcsin (c x)-2 \left (2+\sqrt {1-c^2 x^2}\right ) \log \left (\cos \left (\frac {1}{2} \arcsin (c x)\right )+\sin \left (\frac {1}{2} \arcsin (c x)\right )\right )\right ) \sin \left (\frac {1}{2} \arcsin (c x)\right )\right )}{\sqrt {1-c^2 x^2} \left (\cos \left (\frac {1}{2} \arcsin (c x)\right )+\sin \left (\frac {1}{2} \arcsin (c x)\right )\right )^3}\right )}{6 c d^3 e} \] Input:

Integrate[(a + b*ArcSin[c*x])^2/((d + c*d*x)^(5/2)*Sqrt[e - c*e*x]),x]
 

Output:

-1/6*(Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*((2*a^2*(2 + c*x))/(1 + c*x)^2 + (b^ 
2*(Cot[(Pi + 2*ArcSin[c*x])/4]*(4 + ArcSin[c*x]^2*(2 + Csc[(Pi + 2*ArcSin[ 
c*x])/4]^2)) + 2*ArcSin[c*x]*((-I)*ArcSin[c*x] + Csc[(Pi + 2*ArcSin[c*x])/ 
4]^2 - 4*Log[1 + I/E^(I*ArcSin[c*x])]) - (8*I)*PolyLog[2, (-I)/E^(I*ArcSin 
[c*x])]))/Sqrt[1 - c^2*x^2] + (2*a*b*(Cos[ArcSin[c*x]/2]*(2 + 3*ArcSin[c*x 
] - 6*Log[Cos[ArcSin[c*x]/2] + Sin[ArcSin[c*x]/2]]) + Cos[(3*ArcSin[c*x])/ 
2]*(ArcSin[c*x] + 2*Log[Cos[ArcSin[c*x]/2] + Sin[ArcSin[c*x]/2]]) + 2*(1 + 
 (-1 + Sqrt[1 - c^2*x^2])*ArcSin[c*x] - 2*(2 + Sqrt[1 - c^2*x^2])*Log[Cos[ 
ArcSin[c*x]/2] + Sin[ArcSin[c*x]/2]])*Sin[ArcSin[c*x]/2]))/(Sqrt[1 - c^2*x 
^2]*(Cos[ArcSin[c*x]/2] + Sin[ArcSin[c*x]/2])^3)))/(c*d^3*e)
 

Rubi [A] (verified)

Time = 1.49 (sec) , antiderivative size = 465, normalized size of antiderivative = 0.52, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {5178, 27, 5262, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \arcsin (c x))^2}{(c d x+d)^{5/2} \sqrt {e-c e x}} \, dx\)

\(\Big \downarrow \) 5178

\(\displaystyle \frac {\left (1-c^2 x^2\right )^{5/2} \int \frac {e^2 (1-c x)^2 (a+b \arcsin (c x))^2}{\left (1-c^2 x^2\right )^{5/2}}dx}{(c d x+d)^{5/2} (e-c e x)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e^2 \left (1-c^2 x^2\right )^{5/2} \int \frac {(1-c x)^2 (a+b \arcsin (c x))^2}{\left (1-c^2 x^2\right )^{5/2}}dx}{(c d x+d)^{5/2} (e-c e x)^{5/2}}\)

\(\Big \downarrow \) 5262

\(\displaystyle \frac {e^2 \left (1-c^2 x^2\right )^{5/2} \int \left (\frac {c^2 x^2 (a+b \arcsin (c x))^2}{\left (1-c^2 x^2\right )^{5/2}}-\frac {2 c x (a+b \arcsin (c x))^2}{\left (1-c^2 x^2\right )^{5/2}}+\frac {(a+b \arcsin (c x))^2}{\left (1-c^2 x^2\right )^{5/2}}\right )dx}{(c d x+d)^{5/2} (e-c e x)^{5/2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {e^2 \left (1-c^2 x^2\right )^{5/2} \left (-\frac {4 i b \arctan \left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))}{3 c}-\frac {b c x^2 (a+b \arcsin (c x))}{3 \left (1-c^2 x^2\right )}+\frac {2 x (a+b \arcsin (c x))^2}{3 \sqrt {1-c^2 x^2}}+\frac {x (a+b \arcsin (c x))^2}{3 \left (1-c^2 x^2\right )^{3/2}}+\frac {2 b x (a+b \arcsin (c x))}{3 \left (1-c^2 x^2\right )}-\frac {2 (a+b \arcsin (c x))^2}{3 c \left (1-c^2 x^2\right )^{3/2}}-\frac {b (a+b \arcsin (c x))}{3 c \left (1-c^2 x^2\right )}+\frac {c^2 x^3 (a+b \arcsin (c x))^2}{3 \left (1-c^2 x^2\right )^{3/2}}-\frac {i (a+b \arcsin (c x))^2}{3 c}+\frac {2 b \log \left (1+e^{2 i \arcsin (c x)}\right ) (a+b \arcsin (c x))}{3 c}+\frac {2 i b^2 \operatorname {PolyLog}\left (2,-i e^{i \arcsin (c x)}\right )}{3 c}-\frac {2 i b^2 \operatorname {PolyLog}\left (2,i e^{i \arcsin (c x)}\right )}{3 c}-\frac {i b^2 \operatorname {PolyLog}\left (2,-e^{2 i \arcsin (c x)}\right )}{3 c}-\frac {b^2 \arcsin (c x)}{3 c}+\frac {2 b^2 x}{3 \sqrt {1-c^2 x^2}}-\frac {2 b^2}{3 c \sqrt {1-c^2 x^2}}\right )}{(c d x+d)^{5/2} (e-c e x)^{5/2}}\)

Input:

Int[(a + b*ArcSin[c*x])^2/((d + c*d*x)^(5/2)*Sqrt[e - c*e*x]),x]
 

Output:

(e^2*(1 - c^2*x^2)^(5/2)*((-2*b^2)/(3*c*Sqrt[1 - c^2*x^2]) + (2*b^2*x)/(3* 
Sqrt[1 - c^2*x^2]) - (b^2*ArcSin[c*x])/(3*c) - (b*(a + b*ArcSin[c*x]))/(3* 
c*(1 - c^2*x^2)) + (2*b*x*(a + b*ArcSin[c*x]))/(3*(1 - c^2*x^2)) - (b*c*x^ 
2*(a + b*ArcSin[c*x]))/(3*(1 - c^2*x^2)) - ((I/3)*(a + b*ArcSin[c*x])^2)/c 
 - (2*(a + b*ArcSin[c*x])^2)/(3*c*(1 - c^2*x^2)^(3/2)) + (x*(a + b*ArcSin[ 
c*x])^2)/(3*(1 - c^2*x^2)^(3/2)) + (c^2*x^3*(a + b*ArcSin[c*x])^2)/(3*(1 - 
 c^2*x^2)^(3/2)) + (2*x*(a + b*ArcSin[c*x])^2)/(3*Sqrt[1 - c^2*x^2]) - ((( 
4*I)/3)*b*(a + b*ArcSin[c*x])*ArcTan[E^(I*ArcSin[c*x])])/c + (2*b*(a + b*A 
rcSin[c*x])*Log[1 + E^((2*I)*ArcSin[c*x])])/(3*c) + (((2*I)/3)*b^2*PolyLog 
[2, (-I)*E^(I*ArcSin[c*x])])/c - (((2*I)/3)*b^2*PolyLog[2, I*E^(I*ArcSin[c 
*x])])/c - ((I/3)*b^2*PolyLog[2, -E^((2*I)*ArcSin[c*x])])/c))/((d + c*d*x) 
^(5/2)*(e - c*e*x)^(5/2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5178
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) 
 + (g_.)*(x_))^(q_), x_Symbol] :> Simp[(d + e*x)^q*((f + g*x)^q/(1 - c^2*x^ 
2)^q)   Int[(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 
- e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0]
 

rule 5262
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_ 
) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^2)^p*(a + 
 b*ArcSin[c*x])^n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] & 
& EqQ[c^2*d + e, 0] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ 
[n, 0] && (m == 1 || p > 0 || (n == 1 && p > -1) || (m == 2 && p < -2))
 
Maple [A] (verified)

Time = 3.14 (sec) , antiderivative size = 666, normalized size of antiderivative = 0.74

method result size
default \(a^{2} \left (-\frac {\sqrt {-c x e +e}}{3 c d e \left (c d x +d \right )^{\frac {3}{2}}}-\frac {\sqrt {-c x e +e}}{3 c e \,d^{2} \sqrt {c d x +d}}\right )+\frac {i b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {d \left (c x +1\right )}\, \sqrt {-e \left (c x -1\right )}\, \left (-2 i \arcsin \left (c x \right )^{2} \sqrt {-c^{2} x^{2}+1}-2 i \arcsin \left (c x \right ) x c +\arcsin \left (c x \right )^{2} x^{2} c^{2}+8 i \arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right ) x c +4 \operatorname {polylog}\left (2, i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right ) x^{2} c^{2}+4 i \arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )-2 i \sqrt {-c^{2} x^{2}+1}+4 i \arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right ) x^{2} c^{2}+2 \arcsin \left (c x \right )^{2} c x -2 c^{2} x^{2}-2 i \sqrt {-c^{2} x^{2}+1}\, c x +8 \operatorname {polylog}\left (2, i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right ) x c -i \arcsin \left (c x \right )^{2} \sqrt {-c^{2} x^{2}+1}\, x c -2 i \arcsin \left (c x \right )+\arcsin \left (c x \right )^{2}-4 c x +4 \operatorname {polylog}\left (2, i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )-2\right )}{3 d^{3} e c \left (c^{4} x^{4}+2 c^{3} x^{3}-2 c x -1\right )}+\frac {2 a b \sqrt {-e \left (c x -1\right )}\, \sqrt {d \left (c x +1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \left (i \arcsin \left (c x \right ) x^{2} c^{2}-2 \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right ) c^{2} x^{2}+\arcsin \left (c x \right ) \sqrt {-c^{2} x^{2}+1}\, c x +2 i \arcsin \left (c x \right ) x c -4 \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right ) x c +2 \arcsin \left (c x \right ) \sqrt {-c^{2} x^{2}+1}+i \arcsin \left (c x \right )+c x -2 \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right )+1\right )}{3 d^{3} e c \left (c^{4} x^{4}+2 c^{3} x^{3}-2 c x -1\right )}\) \(666\)
parts \(a^{2} \left (-\frac {\sqrt {-c x e +e}}{3 c d e \left (c d x +d \right )^{\frac {3}{2}}}-\frac {\sqrt {-c x e +e}}{3 c e \,d^{2} \sqrt {c d x +d}}\right )+\frac {i b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {d \left (c x +1\right )}\, \sqrt {-e \left (c x -1\right )}\, \left (-2 i \arcsin \left (c x \right )^{2} \sqrt {-c^{2} x^{2}+1}-2 i \arcsin \left (c x \right ) x c +\arcsin \left (c x \right )^{2} x^{2} c^{2}+8 i \arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right ) x c +4 \operatorname {polylog}\left (2, i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right ) x^{2} c^{2}+4 i \arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )-2 i \sqrt {-c^{2} x^{2}+1}+4 i \arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right ) x^{2} c^{2}+2 \arcsin \left (c x \right )^{2} c x -2 c^{2} x^{2}-2 i \sqrt {-c^{2} x^{2}+1}\, c x +8 \operatorname {polylog}\left (2, i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right ) x c -i \arcsin \left (c x \right )^{2} \sqrt {-c^{2} x^{2}+1}\, x c -2 i \arcsin \left (c x \right )+\arcsin \left (c x \right )^{2}-4 c x +4 \operatorname {polylog}\left (2, i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )-2\right )}{3 d^{3} e c \left (c^{4} x^{4}+2 c^{3} x^{3}-2 c x -1\right )}+\frac {2 a b \sqrt {-e \left (c x -1\right )}\, \sqrt {d \left (c x +1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \left (i \arcsin \left (c x \right ) x^{2} c^{2}-2 \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right ) c^{2} x^{2}+\arcsin \left (c x \right ) \sqrt {-c^{2} x^{2}+1}\, c x +2 i \arcsin \left (c x \right ) x c -4 \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right ) x c +2 \arcsin \left (c x \right ) \sqrt {-c^{2} x^{2}+1}+i \arcsin \left (c x \right )+c x -2 \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right )+1\right )}{3 d^{3} e c \left (c^{4} x^{4}+2 c^{3} x^{3}-2 c x -1\right )}\) \(666\)

Input:

int((a+b*arcsin(c*x))^2/(c*d*x+d)^(5/2)/(-c*e*x+e)^(1/2),x,method=_RETURNV 
ERBOSE)
 

Output:

a^2*(-1/3/c/d/e/(c*d*x+d)^(3/2)*(-c*e*x+e)^(1/2)-1/3/c/e/d^2/(c*d*x+d)^(1/ 
2)*(-c*e*x+e)^(1/2))+1/3*I*b^2*(-c^2*x^2+1)^(1/2)*(d*(c*x+1))^(1/2)*(-e*(c 
*x-1))^(1/2)*(-2*I*arcsin(c*x)^2*(-c^2*x^2+1)^(1/2)-2*I*arcsin(c*x)*c*x+ar 
csin(c*x)^2*x^2*c^2+8*I*arcsin(c*x)*ln(1-I*(I*c*x+(-c^2*x^2+1)^(1/2)))*x*c 
+4*polylog(2,I*(I*c*x+(-c^2*x^2+1)^(1/2)))*x^2*c^2+4*I*arcsin(c*x)*ln(1-I* 
(I*c*x+(-c^2*x^2+1)^(1/2)))-2*I*(-c^2*x^2+1)^(1/2)+4*I*arcsin(c*x)*ln(1-I* 
(I*c*x+(-c^2*x^2+1)^(1/2)))*c^2*x^2+2*arcsin(c*x)^2*c*x-2*c^2*x^2-2*I*(-c^ 
2*x^2+1)^(1/2)*c*x+8*polylog(2,I*(I*c*x+(-c^2*x^2+1)^(1/2)))*x*c-I*arcsin( 
c*x)^2*(-c^2*x^2+1)^(1/2)*x*c-2*I*arcsin(c*x)+arcsin(c*x)^2-4*c*x+4*polylo 
g(2,I*(I*c*x+(-c^2*x^2+1)^(1/2)))-2)/d^3/e/c/(c^4*x^4+2*c^3*x^3-2*c*x-1)+2 
/3*a*b*(-e*(c*x-1))^(1/2)*(d*(c*x+1))^(1/2)*(-c^2*x^2+1)^(1/2)*(I*arcsin(c 
*x)*c^2*x^2-2*ln(I*c*x+(-c^2*x^2+1)^(1/2)+I)*c^2*x^2+arcsin(c*x)*(-c^2*x^2 
+1)^(1/2)*c*x+2*I*arcsin(c*x)*c*x-4*ln(I*c*x+(-c^2*x^2+1)^(1/2)+I)*x*c+2*a 
rcsin(c*x)*(-c^2*x^2+1)^(1/2)+I*arcsin(c*x)+c*x-2*ln(I*c*x+(-c^2*x^2+1)^(1 
/2)+I)+1)/d^3/e/c/(c^4*x^4+2*c^3*x^3-2*c*x-1)
 

Fricas [F]

\[ \int \frac {(a+b \arcsin (c x))^2}{(d+c d x)^{5/2} \sqrt {e-c e x}} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{{\left (c d x + d\right )}^{\frac {5}{2}} \sqrt {-c e x + e}} \,d x } \] Input:

integrate((a+b*arcsin(c*x))^2/(c*d*x+d)^(5/2)/(-c*e*x+e)^(1/2),x, algorith 
m="fricas")
 

Output:

integral(-(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2)*sqrt(c*d*x + d)*sq 
rt(-c*e*x + e)/(c^4*d^3*e*x^4 + 2*c^3*d^3*e*x^3 - 2*c*d^3*e*x - d^3*e), x)
 

Sympy [F]

\[ \int \frac {(a+b \arcsin (c x))^2}{(d+c d x)^{5/2} \sqrt {e-c e x}} \, dx=\int \frac {\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{\left (d \left (c x + 1\right )\right )^{\frac {5}{2}} \sqrt {- e \left (c x - 1\right )}}\, dx \] Input:

integrate((a+b*asin(c*x))**2/(c*d*x+d)**(5/2)/(-c*e*x+e)**(1/2),x)
 

Output:

Integral((a + b*asin(c*x))**2/((d*(c*x + 1))**(5/2)*sqrt(-e*(c*x - 1))), x 
)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {(a+b \arcsin (c x))^2}{(d+c d x)^{5/2} \sqrt {e-c e x}} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((a+b*arcsin(c*x))^2/(c*d*x+d)^(5/2)/(-c*e*x+e)^(1/2),x, algorith 
m="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F]

\[ \int \frac {(a+b \arcsin (c x))^2}{(d+c d x)^{5/2} \sqrt {e-c e x}} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{{\left (c d x + d\right )}^{\frac {5}{2}} \sqrt {-c e x + e}} \,d x } \] Input:

integrate((a+b*arcsin(c*x))^2/(c*d*x+d)^(5/2)/(-c*e*x+e)^(1/2),x, algorith 
m="giac")
 

Output:

integrate((b*arcsin(c*x) + a)^2/((c*d*x + d)^(5/2)*sqrt(-c*e*x + e)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \arcsin (c x))^2}{(d+c d x)^{5/2} \sqrt {e-c e x}} \, dx=\int \frac {{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{{\left (d+c\,d\,x\right )}^{5/2}\,\sqrt {e-c\,e\,x}} \,d x \] Input:

int((a + b*asin(c*x))^2/((d + c*d*x)^(5/2)*(e - c*e*x)^(1/2)),x)
 

Output:

int((a + b*asin(c*x))^2/((d + c*d*x)^(5/2)*(e - c*e*x)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {(a+b \arcsin (c x))^2}{(d+c d x)^{5/2} \sqrt {e-c e x}} \, dx=\frac {-\sqrt {-c x +1}\, a^{2} c x -2 \sqrt {-c x +1}\, a^{2}+6 \sqrt {c x +1}\, \left (\int \frac {\mathit {asin} \left (c x \right )}{\sqrt {c x +1}\, \sqrt {-c x +1}\, c^{2} x^{2}+2 \sqrt {c x +1}\, \sqrt {-c x +1}\, c x +\sqrt {c x +1}\, \sqrt {-c x +1}}d x \right ) a b \,c^{2} x +6 \sqrt {c x +1}\, \left (\int \frac {\mathit {asin} \left (c x \right )}{\sqrt {c x +1}\, \sqrt {-c x +1}\, c^{2} x^{2}+2 \sqrt {c x +1}\, \sqrt {-c x +1}\, c x +\sqrt {c x +1}\, \sqrt {-c x +1}}d x \right ) a b c +3 \sqrt {c x +1}\, \left (\int \frac {\mathit {asin} \left (c x \right )^{2}}{\sqrt {c x +1}\, \sqrt {-c x +1}\, c^{2} x^{2}+2 \sqrt {c x +1}\, \sqrt {-c x +1}\, c x +\sqrt {c x +1}\, \sqrt {-c x +1}}d x \right ) b^{2} c^{2} x +3 \sqrt {c x +1}\, \left (\int \frac {\mathit {asin} \left (c x \right )^{2}}{\sqrt {c x +1}\, \sqrt {-c x +1}\, c^{2} x^{2}+2 \sqrt {c x +1}\, \sqrt {-c x +1}\, c x +\sqrt {c x +1}\, \sqrt {-c x +1}}d x \right ) b^{2} c}{3 \sqrt {e}\, \sqrt {d}\, \sqrt {c x +1}\, c \,d^{2} \left (c x +1\right )} \] Input:

int((a+b*asin(c*x))^2/(c*d*x+d)^(5/2)/(-c*e*x+e)^(1/2),x)
 

Output:

( - sqrt( - c*x + 1)*a**2*c*x - 2*sqrt( - c*x + 1)*a**2 + 6*sqrt(c*x + 1)* 
int(asin(c*x)/(sqrt(c*x + 1)*sqrt( - c*x + 1)*c**2*x**2 + 2*sqrt(c*x + 1)* 
sqrt( - c*x + 1)*c*x + sqrt(c*x + 1)*sqrt( - c*x + 1)),x)*a*b*c**2*x + 6*s 
qrt(c*x + 1)*int(asin(c*x)/(sqrt(c*x + 1)*sqrt( - c*x + 1)*c**2*x**2 + 2*s 
qrt(c*x + 1)*sqrt( - c*x + 1)*c*x + sqrt(c*x + 1)*sqrt( - c*x + 1)),x)*a*b 
*c + 3*sqrt(c*x + 1)*int(asin(c*x)**2/(sqrt(c*x + 1)*sqrt( - c*x + 1)*c**2 
*x**2 + 2*sqrt(c*x + 1)*sqrt( - c*x + 1)*c*x + sqrt(c*x + 1)*sqrt( - c*x + 
 1)),x)*b**2*c**2*x + 3*sqrt(c*x + 1)*int(asin(c*x)**2/(sqrt(c*x + 1)*sqrt 
( - c*x + 1)*c**2*x**2 + 2*sqrt(c*x + 1)*sqrt( - c*x + 1)*c*x + sqrt(c*x + 
 1)*sqrt( - c*x + 1)),x)*b**2*c)/(3*sqrt(e)*sqrt(d)*sqrt(c*x + 1)*c*d**2*( 
c*x + 1))