\(\int \frac {(f+g x+h x^2) (a+b \arcsin (c x))}{(d+e x)^3} \, dx\) [166]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 488 \[ \int \frac {\left (f+g x+h x^2\right ) (a+b \arcsin (c x))}{(d+e x)^3} \, dx=\frac {b c \left (e^2 f-d e g+d^2 h\right ) \sqrt {1-c^2 x^2}}{2 e^2 \left (c^2 d^2-e^2\right ) (d+e x)}-\frac {i b h \arcsin (c x)^2}{2 e^3}-\frac {\left (e^2 f-d e g+d^2 h\right ) (a+b \arcsin (c x))}{2 e^3 (d+e x)^2}-\frac {(e g-2 d h) (a+b \arcsin (c x))}{e^3 (d+e x)}-\frac {b c \left (2 e^2 (e g-2 d h)-c^2 d \left (e^2 f+d e g-3 d^2 h\right )\right ) \arctan \left (\frac {e+c^2 d x}{\sqrt {c^2 d^2-e^2} \sqrt {1-c^2 x^2}}\right )}{2 e^3 \left (c^2 d^2-e^2\right )^{3/2}}+\frac {b h \arcsin (c x) \log \left (1-\frac {i e e^{i \arcsin (c x)}}{c d-\sqrt {c^2 d^2-e^2}}\right )}{e^3}+\frac {b h \arcsin (c x) \log \left (1-\frac {i e e^{i \arcsin (c x)}}{c d+\sqrt {c^2 d^2-e^2}}\right )}{e^3}-\frac {b h \arcsin (c x) \log (d+e x)}{e^3}+\frac {h (a+b \arcsin (c x)) \log (d+e x)}{e^3}-\frac {i b h \operatorname {PolyLog}\left (2,\frac {i e e^{i \arcsin (c x)}}{c d-\sqrt {c^2 d^2-e^2}}\right )}{e^3}-\frac {i b h \operatorname {PolyLog}\left (2,\frac {i e e^{i \arcsin (c x)}}{c d+\sqrt {c^2 d^2-e^2}}\right )}{e^3} \] Output:

1/2*b*c*(d^2*h-d*e*g+e^2*f)*(-c^2*x^2+1)^(1/2)/e^2/(c^2*d^2-e^2)/(e*x+d)-1 
/2*I*b*h*arcsin(c*x)^2/e^3-1/2*(d^2*h-d*e*g+e^2*f)*(a+b*arcsin(c*x))/e^3/( 
e*x+d)^2-(-2*d*h+e*g)*(a+b*arcsin(c*x))/e^3/(e*x+d)-1/2*b*c*(2*e^2*(-2*d*h 
+e*g)-c^2*d*(-3*d^2*h+d*e*g+e^2*f))*arctan((c^2*d*x+e)/(c^2*d^2-e^2)^(1/2) 
/(-c^2*x^2+1)^(1/2))/e^3/(c^2*d^2-e^2)^(3/2)+b*h*arcsin(c*x)*ln(1-I*e*(I*c 
*x+(-c^2*x^2+1)^(1/2))/(c*d-(c^2*d^2-e^2)^(1/2)))/e^3+b*h*arcsin(c*x)*ln(1 
-I*e*(I*c*x+(-c^2*x^2+1)^(1/2))/(c*d+(c^2*d^2-e^2)^(1/2)))/e^3-b*h*arcsin( 
c*x)*ln(e*x+d)/e^3+h*(a+b*arcsin(c*x))*ln(e*x+d)/e^3-I*b*h*polylog(2,I*e*( 
I*c*x+(-c^2*x^2+1)^(1/2))/(c*d-(c^2*d^2-e^2)^(1/2)))/e^3-I*b*h*polylog(2,I 
*e*(I*c*x+(-c^2*x^2+1)^(1/2))/(c*d+(c^2*d^2-e^2)^(1/2)))/e^3
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 4.59 (sec) , antiderivative size = 940, normalized size of antiderivative = 1.93 \[ \int \frac {\left (f+g x+h x^2\right ) (a+b \arcsin (c x))}{(d+e x)^3} \, dx=-\frac {a \left (e^2 f-d e g+d^2 h\right )}{2 e^3 (d+e x)^2}+\frac {a (-e g+2 d h)}{e^3 (d+e x)}+\frac {b f \left (-\frac {c \sqrt {\frac {e \left (-\sqrt {\frac {1}{c^2}}+x\right )}{d+e x}} \sqrt {\frac {e \left (\sqrt {\frac {1}{c^2}}+x\right )}{d+e x}} (d+e x) \operatorname {AppellF1}\left (2,\frac {1}{2},\frac {1}{2},3,\frac {d-\sqrt {\frac {1}{c^2}} e}{d+e x},\frac {d+\sqrt {\frac {1}{c^2}} e}{d+e x}\right )}{\sqrt {1-c^2 x^2}}-2 e \arcsin (c x)\right )}{4 e^2 (d+e x)^2}+\frac {a h \log (d+e x)}{e^3}+b g \left (\frac {-\frac {\arcsin (c x)}{d+e x}+\frac {c \arctan \left (\frac {e+c^2 d x}{\sqrt {c^2 d^2-e^2} \sqrt {1-c^2 x^2}}\right )}{\sqrt {c^2 d^2-e^2}}}{e^2}-\frac {d \left (\frac {c \sqrt {1-c^2 x^2}}{\left (c^2 d^2-e^2\right ) (d+e x)}-\frac {\arcsin (c x)}{e (d+e x)^2}-\frac {i c^3 d \left (\log (4)+\log \left (\frac {e^2 \sqrt {c^2 d^2-e^2} \left (i e+i c^2 d x+\sqrt {c^2 d^2-e^2} \sqrt {1-c^2 x^2}\right )}{c^3 d (d+e x)}\right )\right )}{(c d-e) e (c d+e) \sqrt {c^2 d^2-e^2}}\right )}{2 e}\right )-\frac {b h \left (-\frac {c d^2 e \sqrt {1-c^2 x^2}}{\left (c^2 d^2-e^2\right ) (d+e x)}+\frac {d^2 \arcsin (c x)}{(d+e x)^2}-\frac {4 d \arcsin (c x)}{d+e x}+\frac {4 c d \arctan \left (\frac {e+c^2 d x}{\sqrt {c^2 d^2-e^2} \sqrt {1-c^2 x^2}}\right )}{\sqrt {c^2 d^2-e^2}}+\frac {i c^3 d^3 \left (\log (4)+\log \left (\frac {e^2 \sqrt {c^2 d^2-e^2} \left (i e+i c^2 d x+\sqrt {c^2 d^2-e^2} \sqrt {1-c^2 x^2}\right )}{c^3 d (d+e x)}\right )\right )}{(c d-e) (c d+e) \sqrt {c^2 d^2-e^2}}+i \left (\arcsin (c x) \left (\arcsin (c x)+2 i \left (\log \left (1+\frac {i e e^{i \arcsin (c x)}}{-c d+\sqrt {c^2 d^2-e^2}}\right )+\log \left (1-\frac {i e e^{i \arcsin (c x)}}{c d+\sqrt {c^2 d^2-e^2}}\right )\right )\right )+2 \operatorname {PolyLog}\left (2,\frac {i e e^{i \arcsin (c x)}}{c d-\sqrt {c^2 d^2-e^2}}\right )+2 \operatorname {PolyLog}\left (2,\frac {i e e^{i \arcsin (c x)}}{c d+\sqrt {c^2 d^2-e^2}}\right )\right )\right )}{2 e^3} \] Input:

Integrate[((f + g*x + h*x^2)*(a + b*ArcSin[c*x]))/(d + e*x)^3,x]
 

Output:

-1/2*(a*(e^2*f - d*e*g + d^2*h))/(e^3*(d + e*x)^2) + (a*(-(e*g) + 2*d*h))/ 
(e^3*(d + e*x)) + (b*f*(-((c*Sqrt[(e*(-Sqrt[c^(-2)] + x))/(d + e*x)]*Sqrt[ 
(e*(Sqrt[c^(-2)] + x))/(d + e*x)]*(d + e*x)*AppellF1[2, 1/2, 1/2, 3, (d - 
Sqrt[c^(-2)]*e)/(d + e*x), (d + Sqrt[c^(-2)]*e)/(d + e*x)])/Sqrt[1 - c^2*x 
^2]) - 2*e*ArcSin[c*x]))/(4*e^2*(d + e*x)^2) + (a*h*Log[d + e*x])/e^3 + b* 
g*((-(ArcSin[c*x]/(d + e*x)) + (c*ArcTan[(e + c^2*d*x)/(Sqrt[c^2*d^2 - e^2 
]*Sqrt[1 - c^2*x^2])])/Sqrt[c^2*d^2 - e^2])/e^2 - (d*((c*Sqrt[1 - c^2*x^2] 
)/((c^2*d^2 - e^2)*(d + e*x)) - ArcSin[c*x]/(e*(d + e*x)^2) - (I*c^3*d*(Lo 
g[4] + Log[(e^2*Sqrt[c^2*d^2 - e^2]*(I*e + I*c^2*d*x + Sqrt[c^2*d^2 - e^2] 
*Sqrt[1 - c^2*x^2]))/(c^3*d*(d + e*x))]))/((c*d - e)*e*(c*d + e)*Sqrt[c^2* 
d^2 - e^2])))/(2*e)) - (b*h*(-((c*d^2*e*Sqrt[1 - c^2*x^2])/((c^2*d^2 - e^2 
)*(d + e*x))) + (d^2*ArcSin[c*x])/(d + e*x)^2 - (4*d*ArcSin[c*x])/(d + e*x 
) + (4*c*d*ArcTan[(e + c^2*d*x)/(Sqrt[c^2*d^2 - e^2]*Sqrt[1 - c^2*x^2])])/ 
Sqrt[c^2*d^2 - e^2] + (I*c^3*d^3*(Log[4] + Log[(e^2*Sqrt[c^2*d^2 - e^2]*(I 
*e + I*c^2*d*x + Sqrt[c^2*d^2 - e^2]*Sqrt[1 - c^2*x^2]))/(c^3*d*(d + e*x)) 
]))/((c*d - e)*(c*d + e)*Sqrt[c^2*d^2 - e^2]) + I*(ArcSin[c*x]*(ArcSin[c*x 
] + (2*I)*(Log[1 + (I*e*E^(I*ArcSin[c*x]))/(-(c*d) + Sqrt[c^2*d^2 - e^2])] 
 + Log[1 - (I*e*E^(I*ArcSin[c*x]))/(c*d + Sqrt[c^2*d^2 - e^2])])) + 2*Poly 
Log[2, (I*e*E^(I*ArcSin[c*x]))/(c*d - Sqrt[c^2*d^2 - e^2])] + 2*PolyLog[2, 
 (I*e*E^(I*ArcSin[c*x]))/(c*d + Sqrt[c^2*d^2 - e^2])])))/(2*e^3)
 

Rubi [A] (verified)

Time = 1.59 (sec) , antiderivative size = 478, normalized size of antiderivative = 0.98, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {5252, 27, 7293, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (f+g x+h x^2\right ) (a+b \arcsin (c x))}{(d+e x)^3} \, dx\)

\(\Big \downarrow \) 5252

\(\displaystyle -b c \int \frac {3 h d^2-e (g-4 h x) d-e^2 (f+2 g x)+2 h (d+e x)^2 \log (d+e x)}{2 e^3 (d+e x)^2 \sqrt {1-c^2 x^2}}dx-\frac {(a+b \arcsin (c x)) \left (d^2 h-d e g+e^2 f\right )}{2 e^3 (d+e x)^2}-\frac {(e g-2 d h) (a+b \arcsin (c x))}{e^3 (d+e x)}+\frac {h \log (d+e x) (a+b \arcsin (c x))}{e^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {b c \int \frac {3 h d^2-e (g-4 h x) d-e^2 (f+2 g x)+2 h (d+e x)^2 \log (d+e x)}{(d+e x)^2 \sqrt {1-c^2 x^2}}dx}{2 e^3}-\frac {(a+b \arcsin (c x)) \left (d^2 h-d e g+e^2 f\right )}{2 e^3 (d+e x)^2}-\frac {(e g-2 d h) (a+b \arcsin (c x))}{e^3 (d+e x)}+\frac {h \log (d+e x) (a+b \arcsin (c x))}{e^3}\)

\(\Big \downarrow \) 7293

\(\displaystyle -\frac {b c \int \left (\frac {3 h d^2-e g d-e^2 f-2 e (e g-2 d h) x}{(d+e x)^2 \sqrt {1-c^2 x^2}}+\frac {2 h \log (d+e x)}{\sqrt {1-c^2 x^2}}\right )dx}{2 e^3}-\frac {(a+b \arcsin (c x)) \left (d^2 h-d e g+e^2 f\right )}{2 e^3 (d+e x)^2}-\frac {(e g-2 d h) (a+b \arcsin (c x))}{e^3 (d+e x)}+\frac {h \log (d+e x) (a+b \arcsin (c x))}{e^3}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {(a+b \arcsin (c x)) \left (d^2 h-d e g+e^2 f\right )}{2 e^3 (d+e x)^2}-\frac {(e g-2 d h) (a+b \arcsin (c x))}{e^3 (d+e x)}+\frac {h \log (d+e x) (a+b \arcsin (c x))}{e^3}-\frac {b c \left (\frac {2 i h \operatorname {PolyLog}\left (2,\frac {i e e^{i \arcsin (c x)}}{c d-\sqrt {c^2 d^2-e^2}}\right )}{c}+\frac {2 i h \operatorname {PolyLog}\left (2,\frac {i e e^{i \arcsin (c x)}}{c d+\sqrt {c^2 d^2-e^2}}\right )}{c}-\frac {2 h \arcsin (c x) \log \left (1-\frac {i e e^{i \arcsin (c x)}}{c d-\sqrt {c^2 d^2-e^2}}\right )}{c}-\frac {2 h \arcsin (c x) \log \left (1-\frac {i e e^{i \arcsin (c x)}}{\sqrt {c^2 d^2-e^2}+c d}\right )}{c}+\frac {2 h \arcsin (c x) \log (d+e x)}{c}+\frac {i h \arcsin (c x)^2}{c}+\frac {\arctan \left (\frac {c^2 d x+e}{\sqrt {1-c^2 x^2} \sqrt {c^2 d^2-e^2}}\right ) \left (2 e^2 (e g-2 d h)-c^2 d \left (-3 d^2 h+d e g+e^2 f\right )\right )}{\left (c^2 d^2-e^2\right )^{3/2}}-\frac {e \sqrt {1-c^2 x^2} \left (d^2 h-d e g+e^2 f\right )}{\left (c^2 d^2-e^2\right ) (d+e x)}\right )}{2 e^3}\)

Input:

Int[((f + g*x + h*x^2)*(a + b*ArcSin[c*x]))/(d + e*x)^3,x]
 

Output:

-1/2*((e^2*f - d*e*g + d^2*h)*(a + b*ArcSin[c*x]))/(e^3*(d + e*x)^2) - ((e 
*g - 2*d*h)*(a + b*ArcSin[c*x]))/(e^3*(d + e*x)) + (h*(a + b*ArcSin[c*x])* 
Log[d + e*x])/e^3 - (b*c*(-((e*(e^2*f - d*e*g + d^2*h)*Sqrt[1 - c^2*x^2])/ 
((c^2*d^2 - e^2)*(d + e*x))) + (I*h*ArcSin[c*x]^2)/c + ((2*e^2*(e*g - 2*d* 
h) - c^2*d*(e^2*f + d*e*g - 3*d^2*h))*ArcTan[(e + c^2*d*x)/(Sqrt[c^2*d^2 - 
 e^2]*Sqrt[1 - c^2*x^2])])/(c^2*d^2 - e^2)^(3/2) - (2*h*ArcSin[c*x]*Log[1 
- (I*e*E^(I*ArcSin[c*x]))/(c*d - Sqrt[c^2*d^2 - e^2])])/c - (2*h*ArcSin[c* 
x]*Log[1 - (I*e*E^(I*ArcSin[c*x]))/(c*d + Sqrt[c^2*d^2 - e^2])])/c + (2*h* 
ArcSin[c*x]*Log[d + e*x])/c + ((2*I)*h*PolyLog[2, (I*e*E^(I*ArcSin[c*x]))/ 
(c*d - Sqrt[c^2*d^2 - e^2])])/c + ((2*I)*h*PolyLog[2, (I*e*E^(I*ArcSin[c*x 
]))/(c*d + Sqrt[c^2*d^2 - e^2])])/c))/(2*e^3)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5252
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*(Px_)*((d_.) + (e_.)*(x_))^(m_.), x_ 
Symbol] :> With[{u = IntHide[Px*(d + e*x)^m, x]}, Simp[(a + b*ArcSin[c*x]) 
  u, x] - Simp[b*c   Int[SimplifyIntegrand[u/Sqrt[1 - c^2*x^2], x], x], x]] 
 /; FreeQ[{a, b, c, d, e, m}, x] && PolynomialQ[Px, x]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 2026 vs. \(2 (489 ) = 978\).

Time = 3.49 (sec) , antiderivative size = 2027, normalized size of antiderivative = 4.15

method result size
parts \(\text {Expression too large to display}\) \(2027\)
derivativedivides \(\text {Expression too large to display}\) \(2038\)
default \(\text {Expression too large to display}\) \(2038\)

Input:

int((h*x^2+g*x+f)*(a+b*arcsin(c*x))/(e*x+d)^3,x,method=_RETURNVERBOSE)
 

Output:

a*(h/e^3*ln(e*x+d)-1/2*(d^2*h-d*e*g+e^2*f)/e^3/(e*x+d)^2-(-2*d*h+e*g)/e^3/ 
(e*x+d))+b/c*(1/2*I*c*arcsin(c*x)^2*h/e^3+1/2*c^2*(-I*c^3*e^4*f*x^2-I*c^3* 
d^4*h+e^4*c*f*arcsin(c*x)+3*c^3*d^4*h*arcsin(c*x)+4*arcsin(c*x)*c^3*d^3*e* 
h*x-2*arcsin(c*x)*c^3*d^2*e^2*g*x+I*c^3*d*e^3*g*x^2+(-c^2*x^2+1)^(1/2)*c^2 
*d^2*e^2*h*x-(-c^2*x^2+1)^(1/2)*c^2*d*e^3*g*x-2*I*c^3*d^3*e*h*x+2*I*c^3*d^ 
2*e^2*g*x-2*I*c^3*d*e^3*f*x-I*c^3*d^2*e^2*h*x^2-e*c^3*d^3*g*arcsin(c*x)+e^ 
3*c*g*arcsin(c*x)*d-3*e^2*c*d^2*h*arcsin(c*x)+I*c^3*d^3*e*g+(-c^2*x^2+1)^( 
1/2)*c^2*d^3*e*h-(-c^2*x^2+1)^(1/2)*c^2*d^2*e^2*g+(-c^2*x^2+1)^(1/2)*c^2*d 
*e^3*f-I*c^3*d^2*e^2*f+2*arcsin(c*x)*e^4*g*c*x-e^2*c^3*d^2*f*arcsin(c*x)-4 
*arcsin(c*x)*d*e^3*h*c*x+(-c^2*x^2+1)^(1/2)*c^2*e^4*f*x)/(c*e*x+c*d)^2/(c^ 
2*d^2-e^2)/e^3-2*c^3/(c^2*d^2-e^2)^2/e*h*arcsin(c*x)*ln((I*d*c+(I*c*x+(-c^ 
2*x^2+1)^(1/2))*e-(-c^2*d^2+e^2)^(1/2))/(I*d*c-(-c^2*d^2+e^2)^(1/2)))*d^2- 
2*c^3/(c^2*d^2-e^2)^2/e*h*arcsin(c*x)*ln((I*d*c+(I*c*x+(-c^2*x^2+1)^(1/2)) 
*e+(-c^2*d^2+e^2)^(1/2))/(I*d*c+(-c^2*d^2+e^2)^(1/2)))*d^2-I*c^5/(c^2*d^2- 
e^2)^2/e^3*d^4*h*dilog((I*d*c+(I*c*x+(-c^2*x^2+1)^(1/2))*e-(-c^2*d^2+e^2)^ 
(1/2))/(I*d*c-(-c^2*d^2+e^2)^(1/2)))-I*c^3/(c^2*d^2-e^2)/e^3*d^2*h*arcsin( 
c*x)^2+c^5/(c^2*d^2-e^2)^2/e^3*d^4*h*arcsin(c*x)*ln((I*d*c+(I*c*x+(-c^2*x^ 
2+1)^(1/2))*e-(-c^2*d^2+e^2)^(1/2))/(I*d*c-(-c^2*d^2+e^2)^(1/2)))+c^5/(c^2 
*d^2-e^2)^2/e^3*d^4*h*arcsin(c*x)*ln((I*d*c+(I*c*x+(-c^2*x^2+1)^(1/2))*e+( 
-c^2*d^2+e^2)^(1/2))/(I*d*c+(-c^2*d^2+e^2)^(1/2)))-I*c/(c^2*d^2-e^2)^2*...
 

Fricas [F]

\[ \int \frac {\left (f+g x+h x^2\right ) (a+b \arcsin (c x))}{(d+e x)^3} \, dx=\int { \frac {{\left (h x^{2} + g x + f\right )} {\left (b \arcsin \left (c x\right ) + a\right )}}{{\left (e x + d\right )}^{3}} \,d x } \] Input:

integrate((h*x^2+g*x+f)*(a+b*arcsin(c*x))/(e*x+d)^3,x, algorithm="fricas")
 

Output:

integral((a*h*x^2 + a*g*x + a*f + (b*h*x^2 + b*g*x + b*f)*arcsin(c*x))/(e^ 
3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x + d^3), x)
 

Sympy [F]

\[ \int \frac {\left (f+g x+h x^2\right ) (a+b \arcsin (c x))}{(d+e x)^3} \, dx=\int \frac {\left (a + b \operatorname {asin}{\left (c x \right )}\right ) \left (f + g x + h x^{2}\right )}{\left (d + e x\right )^{3}}\, dx \] Input:

integrate((h*x**2+g*x+f)*(a+b*asin(c*x))/(e*x+d)**3,x)
 

Output:

Integral((a + b*asin(c*x))*(f + g*x + h*x**2)/(d + e*x)**3, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (f+g x+h x^2\right ) (a+b \arcsin (c x))}{(d+e x)^3} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((h*x^2+g*x+f)*(a+b*arcsin(c*x))/(e*x+d)^3,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume((e-c*d)*(e+c*d)>0)', see `assume 
?` for mor
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\left (f+g x+h x^2\right ) (a+b \arcsin (c x))}{(d+e x)^3} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate((h*x^2+g*x+f)*(a+b*arcsin(c*x))/(e*x+d)^3,x, algorithm="giac")
 

Output:

Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (f+g x+h x^2\right ) (a+b \arcsin (c x))}{(d+e x)^3} \, dx=\int \frac {\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,\left (h\,x^2+g\,x+f\right )}{{\left (d+e\,x\right )}^3} \,d x \] Input:

int(((a + b*asin(c*x))*(f + g*x + h*x^2))/(d + e*x)^3,x)
 

Output:

int(((a + b*asin(c*x))*(f + g*x + h*x^2))/(d + e*x)^3, x)
 

Reduce [F]

\[ \int \frac {\left (f+g x+h x^2\right ) (a+b \arcsin (c x))}{(d+e x)^3} \, dx=\frac {2 \left (\int \frac {\mathit {asin} \left (c x \right )}{e^{3} x^{3}+3 d \,e^{2} x^{2}+3 d^{2} e x +d^{3}}d x \right ) b \,d^{3} e^{3} f +4 \left (\int \frac {\mathit {asin} \left (c x \right )}{e^{3} x^{3}+3 d \,e^{2} x^{2}+3 d^{2} e x +d^{3}}d x \right ) b \,d^{2} e^{4} f x +2 \left (\int \frac {\mathit {asin} \left (c x \right )}{e^{3} x^{3}+3 d \,e^{2} x^{2}+3 d^{2} e x +d^{3}}d x \right ) b d \,e^{5} f \,x^{2}+2 \left (\int \frac {\mathit {asin} \left (c x \right ) x^{2}}{e^{3} x^{3}+3 d \,e^{2} x^{2}+3 d^{2} e x +d^{3}}d x \right ) b \,d^{3} e^{3} h +4 \left (\int \frac {\mathit {asin} \left (c x \right ) x^{2}}{e^{3} x^{3}+3 d \,e^{2} x^{2}+3 d^{2} e x +d^{3}}d x \right ) b \,d^{2} e^{4} h x +2 \left (\int \frac {\mathit {asin} \left (c x \right ) x^{2}}{e^{3} x^{3}+3 d \,e^{2} x^{2}+3 d^{2} e x +d^{3}}d x \right ) b d \,e^{5} h \,x^{2}+2 \left (\int \frac {\mathit {asin} \left (c x \right ) x}{e^{3} x^{3}+3 d \,e^{2} x^{2}+3 d^{2} e x +d^{3}}d x \right ) b \,d^{3} e^{3} g +4 \left (\int \frac {\mathit {asin} \left (c x \right ) x}{e^{3} x^{3}+3 d \,e^{2} x^{2}+3 d^{2} e x +d^{3}}d x \right ) b \,d^{2} e^{4} g x +2 \left (\int \frac {\mathit {asin} \left (c x \right ) x}{e^{3} x^{3}+3 d \,e^{2} x^{2}+3 d^{2} e x +d^{3}}d x \right ) b d \,e^{5} g \,x^{2}+2 \,\mathrm {log}\left (e x +d \right ) a \,d^{3} h +4 \,\mathrm {log}\left (e x +d \right ) a \,d^{2} e h x +2 \,\mathrm {log}\left (e x +d \right ) a d \,e^{2} h \,x^{2}+a \,d^{3} h -a d \,e^{2} f -2 a d \,e^{2} h \,x^{2}+a \,e^{3} g \,x^{2}}{2 d \,e^{3} \left (e^{2} x^{2}+2 d e x +d^{2}\right )} \] Input:

int((h*x^2+g*x+f)*(a+b*asin(c*x))/(e*x+d)^3,x)
                                                                                    
                                                                                    
 

Output:

(2*int(asin(c*x)/(d**3 + 3*d**2*e*x + 3*d*e**2*x**2 + e**3*x**3),x)*b*d**3 
*e**3*f + 4*int(asin(c*x)/(d**3 + 3*d**2*e*x + 3*d*e**2*x**2 + e**3*x**3), 
x)*b*d**2*e**4*f*x + 2*int(asin(c*x)/(d**3 + 3*d**2*e*x + 3*d*e**2*x**2 + 
e**3*x**3),x)*b*d*e**5*f*x**2 + 2*int((asin(c*x)*x**2)/(d**3 + 3*d**2*e*x 
+ 3*d*e**2*x**2 + e**3*x**3),x)*b*d**3*e**3*h + 4*int((asin(c*x)*x**2)/(d* 
*3 + 3*d**2*e*x + 3*d*e**2*x**2 + e**3*x**3),x)*b*d**2*e**4*h*x + 2*int((a 
sin(c*x)*x**2)/(d**3 + 3*d**2*e*x + 3*d*e**2*x**2 + e**3*x**3),x)*b*d*e**5 
*h*x**2 + 2*int((asin(c*x)*x)/(d**3 + 3*d**2*e*x + 3*d*e**2*x**2 + e**3*x* 
*3),x)*b*d**3*e**3*g + 4*int((asin(c*x)*x)/(d**3 + 3*d**2*e*x + 3*d*e**2*x 
**2 + e**3*x**3),x)*b*d**2*e**4*g*x + 2*int((asin(c*x)*x)/(d**3 + 3*d**2*e 
*x + 3*d*e**2*x**2 + e**3*x**3),x)*b*d*e**5*g*x**2 + 2*log(d + e*x)*a*d**3 
*h + 4*log(d + e*x)*a*d**2*e*h*x + 2*log(d + e*x)*a*d*e**2*h*x**2 + a*d**3 
*h - a*d*e**2*f - 2*a*d*e**2*h*x**2 + a*e**3*g*x**2)/(2*d*e**3*(d**2 + 2*d 
*e*x + e**2*x**2))