\(\int \frac {(e-c e x)^{5/2} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx\) [84]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 559 \[ \int \frac {(e-c e x)^{5/2} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx=-\frac {68 b^2 e^3 \left (1-c^2 x^2\right )}{9 c \sqrt {d+c d x} \sqrt {e-c e x}}+\frac {3 b^2 e^3 x \left (1-c^2 x^2\right )}{4 \sqrt {d+c d x} \sqrt {e-c e x}}+\frac {2 b^2 e^3 \left (1-c^2 x^2\right )^2}{27 c \sqrt {d+c d x} \sqrt {e-c e x}}-\frac {3 b^2 e^3 \sqrt {1-c^2 x^2} \arcsin (c x)}{4 c \sqrt {d+c d x} \sqrt {e-c e x}}-\frac {22 b e^3 x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{3 \sqrt {d+c d x} \sqrt {e-c e x}}+\frac {3 b c e^3 x^2 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{2 \sqrt {d+c d x} \sqrt {e-c e x}}-\frac {2 b c^2 e^3 x^3 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{9 \sqrt {d+c d x} \sqrt {e-c e x}}+\frac {11 e^3 \left (1-c^2 x^2\right ) (a+b \arcsin (c x))^2}{3 c \sqrt {d+c d x} \sqrt {e-c e x}}-\frac {3 e^3 x \left (1-c^2 x^2\right ) (a+b \arcsin (c x))^2}{2 \sqrt {d+c d x} \sqrt {e-c e x}}+\frac {c e^3 x^2 \left (1-c^2 x^2\right ) (a+b \arcsin (c x))^2}{3 \sqrt {d+c d x} \sqrt {e-c e x}}+\frac {5 e^3 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^3}{6 b c \sqrt {d+c d x} \sqrt {e-c e x}} \] Output:

-68/9*b^2*e^3*(-c^2*x^2+1)/c/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2)+3/4*b^2*e^3* 
x*(-c^2*x^2+1)/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2)+2/27*b^2*e^3*(-c^2*x^2+1)^ 
2/c/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2)-3/4*b^2*e^3*(-c^2*x^2+1)^(1/2)*arcsin 
(c*x)/c/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2)-22/3*b*e^3*x*(-c^2*x^2+1)^(1/2)*( 
a+b*arcsin(c*x))/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2)+3/2*b*c*e^3*x^2*(-c^2*x^ 
2+1)^(1/2)*(a+b*arcsin(c*x))/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2)-2/9*b*c^2*e^ 
3*x^3*(-c^2*x^2+1)^(1/2)*(a+b*arcsin(c*x))/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2 
)+11/3*e^3*(-c^2*x^2+1)*(a+b*arcsin(c*x))^2/c/(c*d*x+d)^(1/2)/(-c*e*x+e)^( 
1/2)-3/2*e^3*x*(-c^2*x^2+1)*(a+b*arcsin(c*x))^2/(c*d*x+d)^(1/2)/(-c*e*x+e) 
^(1/2)+1/3*c*e^3*x^2*(-c^2*x^2+1)*(a+b*arcsin(c*x))^2/(c*d*x+d)^(1/2)/(-c* 
e*x+e)^(1/2)+5/6*e^3*(-c^2*x^2+1)^(1/2)*(a+b*arcsin(c*x))^3/b/c/(c*d*x+d)^ 
(1/2)/(-c*e*x+e)^(1/2)
 

Mathematica [A] (verified)

Time = 12.19 (sec) , antiderivative size = 473, normalized size of antiderivative = 0.85 \[ \int \frac {(e-c e x)^{5/2} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx=\frac {180 b^2 e^2 \sqrt {d+c d x} \sqrt {e-c e x} \arcsin (c x)^3-540 a^2 \sqrt {d} e^{5/2} \sqrt {1-c^2 x^2} \arctan \left (\frac {c x \sqrt {d+c d x} \sqrt {e-c e x}}{\sqrt {d} \sqrt {e} \left (-1+c^2 x^2\right )}\right )-6 b e^2 \sqrt {d+c d x} \sqrt {e-c e x} \arcsin (c x) \left (264 b c x+8 b c^3 x^3-270 a \sqrt {1-c^2 x^2}+108 a c x \sqrt {1-c^2 x^2}+27 b \cos (2 \arcsin (c x))+6 a \cos (3 \arcsin (c x))\right )+18 b e^2 \sqrt {d+c d x} \sqrt {e-c e x} \arcsin (c x)^2 \left (30 a+45 b \sqrt {1-c^2 x^2}-b \cos (3 \arcsin (c x))-9 b \sin (2 \arcsin (c x))\right )+e^2 \sqrt {d+c d x} \sqrt {e-c e x} \left (-1620 a b c x+792 a^2 \sqrt {1-c^2 x^2}-1620 b^2 \sqrt {1-c^2 x^2}-324 a^2 c x \sqrt {1-c^2 x^2}+72 a^2 c^2 x^2 \sqrt {1-c^2 x^2}-162 a b \cos (2 \arcsin (c x))+4 b^2 \cos (3 \arcsin (c x))+81 b^2 \sin (2 \arcsin (c x))+12 a b \sin (3 \arcsin (c x))\right )}{216 c d \sqrt {1-c^2 x^2}} \] Input:

Integrate[((e - c*e*x)^(5/2)*(a + b*ArcSin[c*x])^2)/Sqrt[d + c*d*x],x]
 

Output:

(180*b^2*e^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*ArcSin[c*x]^3 - 540*a^2*Sqrt[ 
d]*e^(5/2)*Sqrt[1 - c^2*x^2]*ArcTan[(c*x*Sqrt[d + c*d*x]*Sqrt[e - c*e*x])/ 
(Sqrt[d]*Sqrt[e]*(-1 + c^2*x^2))] - 6*b*e^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x 
]*ArcSin[c*x]*(264*b*c*x + 8*b*c^3*x^3 - 270*a*Sqrt[1 - c^2*x^2] + 108*a*c 
*x*Sqrt[1 - c^2*x^2] + 27*b*Cos[2*ArcSin[c*x]] + 6*a*Cos[3*ArcSin[c*x]]) + 
 18*b*e^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*ArcSin[c*x]^2*(30*a + 45*b*Sqrt[ 
1 - c^2*x^2] - b*Cos[3*ArcSin[c*x]] - 9*b*Sin[2*ArcSin[c*x]]) + e^2*Sqrt[d 
 + c*d*x]*Sqrt[e - c*e*x]*(-1620*a*b*c*x + 792*a^2*Sqrt[1 - c^2*x^2] - 162 
0*b^2*Sqrt[1 - c^2*x^2] - 324*a^2*c*x*Sqrt[1 - c^2*x^2] + 72*a^2*c^2*x^2*S 
qrt[1 - c^2*x^2] - 162*a*b*Cos[2*ArcSin[c*x]] + 4*b^2*Cos[3*ArcSin[c*x]] + 
 81*b^2*Sin[2*ArcSin[c*x]] + 12*a*b*Sin[3*ArcSin[c*x]]))/(216*c*d*Sqrt[1 - 
 c^2*x^2])
 

Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 302, normalized size of antiderivative = 0.54, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {5178, 27, 5272, 3042, 3798, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e-c e x)^{5/2} (a+b \arcsin (c x))^2}{\sqrt {c d x+d}} \, dx\)

\(\Big \downarrow \) 5178

\(\displaystyle \frac {\sqrt {1-c^2 x^2} \int \frac {e^3 (1-c x)^3 (a+b \arcsin (c x))^2}{\sqrt {1-c^2 x^2}}dx}{\sqrt {c d x+d} \sqrt {e-c e x}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e^3 \sqrt {1-c^2 x^2} \int \frac {(1-c x)^3 (a+b \arcsin (c x))^2}{\sqrt {1-c^2 x^2}}dx}{\sqrt {c d x+d} \sqrt {e-c e x}}\)

\(\Big \downarrow \) 5272

\(\displaystyle \frac {e^3 \sqrt {1-c^2 x^2} \int \left (c-c^2 x\right )^3 (a+b \arcsin (c x))^2d\arcsin (c x)}{c^4 \sqrt {c d x+d} \sqrt {e-c e x}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e^3 \sqrt {1-c^2 x^2} \int (a+b \arcsin (c x))^2 (c-c \sin (\arcsin (c x)))^3d\arcsin (c x)}{c^4 \sqrt {c d x+d} \sqrt {e-c e x}}\)

\(\Big \downarrow \) 3798

\(\displaystyle \frac {e^3 \sqrt {1-c^2 x^2} \int \left (-x^3 (a+b \arcsin (c x))^2 c^6+3 x^2 (a+b \arcsin (c x))^2 c^5-3 x (a+b \arcsin (c x))^2 c^4+(a+b \arcsin (c x))^2 c^3\right )d\arcsin (c x)}{c^4 \sqrt {c d x+d} \sqrt {e-c e x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {e^3 \sqrt {1-c^2 x^2} \left (-\frac {2}{9} b c^6 x^3 (a+b \arcsin (c x))+\frac {3}{2} b c^5 x^2 (a+b \arcsin (c x))-\frac {22}{3} b c^4 x (a+b \arcsin (c x))+\frac {5 c^3 (a+b \arcsin (c x))^3}{6 b}+\frac {1}{3} c^5 x^2 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2-\frac {3}{2} c^4 x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2+\frac {11}{3} c^3 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2-\frac {3}{4} b^2 c^3 \arcsin (c x)+\frac {3}{4} b^2 c^4 x \sqrt {1-c^2 x^2}+\frac {2}{27} b^2 c^3 \left (1-c^2 x^2\right )^{3/2}-\frac {68}{9} b^2 c^3 \sqrt {1-c^2 x^2}\right )}{c^4 \sqrt {c d x+d} \sqrt {e-c e x}}\)

Input:

Int[((e - c*e*x)^(5/2)*(a + b*ArcSin[c*x])^2)/Sqrt[d + c*d*x],x]
 

Output:

(e^3*Sqrt[1 - c^2*x^2]*((-68*b^2*c^3*Sqrt[1 - c^2*x^2])/9 + (3*b^2*c^4*x*S 
qrt[1 - c^2*x^2])/4 + (2*b^2*c^3*(1 - c^2*x^2)^(3/2))/27 - (3*b^2*c^3*ArcS 
in[c*x])/4 - (22*b*c^4*x*(a + b*ArcSin[c*x]))/3 + (3*b*c^5*x^2*(a + b*ArcS 
in[c*x]))/2 - (2*b*c^6*x^3*(a + b*ArcSin[c*x]))/9 + (11*c^3*Sqrt[1 - c^2*x 
^2]*(a + b*ArcSin[c*x])^2)/3 - (3*c^4*x*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c* 
x])^2)/2 + (c^5*x^2*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/3 + (5*c^3*(a 
 + b*ArcSin[c*x])^3)/(6*b)))/(c^4*Sqrt[d + c*d*x]*Sqrt[e - c*e*x])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3798
Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_.) 
, x_Symbol] :> Int[ExpandIntegrand[(c + d*x)^m, (a + b*Sin[e + f*x])^n, x], 
 x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[n, 0] && (EqQ[n, 1] || IGtQ[ 
m, 0] || NeQ[a^2 - b^2, 0])
 

rule 5178
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) 
 + (g_.)*(x_))^(q_), x_Symbol] :> Simp[(d + e*x)^q*((f + g*x)^q/(1 - c^2*x^ 
2)^q)   Int[(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 
- e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0]
 

rule 5272
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.))/Sq 
rt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[1/(c^(m + 1)*Sqrt[d])   Subst[In 
t[(a + b*x)^n*(c*f + g*Sin[x])^m, x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c 
, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && GtQ[d, 0] && (G 
tQ[m, 0] || IGtQ[n, 0])
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 3.83 (sec) , antiderivative size = 1820, normalized size of antiderivative = 3.26

method result size
default \(\text {Expression too large to display}\) \(1820\)
parts \(\text {Expression too large to display}\) \(1820\)

Input:

int((-c*e*x+e)^(5/2)*(a+b*arcsin(c*x))^2/(c*d*x+d)^(1/2),x,method=_RETURNV 
ERBOSE)
 

Output:

1/3*a^2/c/d*(-c*e*x+e)^(5/2)*(c*d*x+d)^(1/2)+5/6*a^2*e/c/d*(-c*e*x+e)^(3/2 
)*(c*d*x+d)^(1/2)+5/2*a^2*e^2/c/d*(-c*e*x+e)^(1/2)*(c*d*x+d)^(1/2)+5/2*a^2 
*e^3*((c*d*x+d)*(-c*e*x+e))^(1/2)/(-c*e*x+e)^(1/2)/(c*d*x+d)^(1/2)/(c^2*d* 
e)^(1/2)*arctan((c^2*d*e)^(1/2)*x/(-c^2*d*e*x^2+d*e)^(1/2))+b^2*(-5/6*(-e* 
(c*x-1))^(1/2)*(d*(c*x+1))^(1/2)*(-c^2*x^2+1)^(1/2)/(c*x+1)/d/c/(c*x-1)*ar 
csin(c*x)^3*e^2+1/432*(-e*(c*x-1))^(1/2)*(d*(c*x+1))^(1/2)*(-4*c^3*x^3-8*I 
*(-c^2*x^2+1)^(1/2)*x^3*c^3+8*c^4*x^4+3*c*x+4*I*(-c^2*x^2+1)^(1/2)*x^2*c^2 
+4*I*c*x*(-c^2*x^2+1)^(1/2)-8*c^2*x^2-I*(-c^2*x^2+1)^(1/2)+1)*(6*I*arcsin( 
c*x)+9*arcsin(c*x)^2-2)*e^2/(c*x+1)/d/c/(c*x-1)+15/16*(-e*(c*x-1))^(1/2)*( 
d*(c*x+1))^(1/2)*(-I*(-c^2*x^2+1)^(1/2)+c*x-1)*(arcsin(c*x)^2-2+2*I*arcsin 
(c*x))*e^2/(c*x+1)/d/c/(c*x-1)+15/8*(-e*(c*x-1))^(1/2)*(d*(c*x+1))^(1/2)*( 
I*(-c^2*x^2+1)^(1/2)*c*x+c^2*x^2-1)*(arcsin(c*x)^2-2-2*I*arcsin(c*x))*e^2/ 
(c*x+1)/d/c/(c*x-1)-3/32*(-e*(c*x-1))^(1/2)*(d*(c*x+1))^(1/2)*(2*I*(-c^2*x 
^2+1)^(1/2)*c*x+2*c^2*x^2-I*(-c^2*x^2+1)^(1/2)-c*x-1)*(2*arcsin(c*x)^2-1-2 
*I*arcsin(c*x))*e^2/(c*x+1)/d/c/(c*x-1)+1/864*(-e*(c*x-1))^(1/2)*(d*(c*x+1 
))^(1/2)*(I*c*x-I-(-c^2*x^2+1)^(1/2))*(162*I*arcsin(c*x)+126*arcsin(c*x)^2 
-73)*cos(3*arcsin(c*x))*e^2/(c*x+1)/d/c/(c*x-1)-1/288*(-e*(c*x-1))^(1/2)*( 
d*(c*x+1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)+c*x-1)*(46*I*arcsin(c*x)+54*arcsin( 
c*x)^2-27)*sin(3*arcsin(c*x))*e^2/(c*x+1)/d/c/(c*x-1)+1/216*(-e*(c*x-1))^( 
1/2)*(d*(c*x+1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)+c*x-1)*(198*arcsin(c*x)^2+...
 

Fricas [F]

\[ \int \frac {(e-c e x)^{5/2} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx=\int { \frac {{\left (-c e x + e\right )}^{\frac {5}{2}} {\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{\sqrt {c d x + d}} \,d x } \] Input:

integrate((-c*e*x+e)^(5/2)*(a+b*arcsin(c*x))^2/(c*d*x+d)^(1/2),x, algorith 
m="fricas")
 

Output:

integral((a^2*c^2*e^2*x^2 - 2*a^2*c*e^2*x + a^2*e^2 + (b^2*c^2*e^2*x^2 - 2 
*b^2*c*e^2*x + b^2*e^2)*arcsin(c*x)^2 + 2*(a*b*c^2*e^2*x^2 - 2*a*b*c*e^2*x 
 + a*b*e^2)*arcsin(c*x))*sqrt(-c*e*x + e)/sqrt(c*d*x + d), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(e-c e x)^{5/2} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx=\text {Timed out} \] Input:

integrate((-c*e*x+e)**(5/2)*(a+b*asin(c*x))**2/(c*d*x+d)**(1/2),x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {(e-c e x)^{5/2} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((-c*e*x+e)^(5/2)*(a+b*arcsin(c*x))^2/(c*d*x+d)^(1/2),x, algorith 
m="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F]

\[ \int \frac {(e-c e x)^{5/2} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx=\int { \frac {{\left (-c e x + e\right )}^{\frac {5}{2}} {\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{\sqrt {c d x + d}} \,d x } \] Input:

integrate((-c*e*x+e)^(5/2)*(a+b*arcsin(c*x))^2/(c*d*x+d)^(1/2),x, algorith 
m="giac")
 

Output:

integrate((-c*e*x + e)^(5/2)*(b*arcsin(c*x) + a)^2/sqrt(c*d*x + d), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(e-c e x)^{5/2} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx=\int \frac {{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2\,{\left (e-c\,e\,x\right )}^{5/2}}{\sqrt {d+c\,d\,x}} \,d x \] Input:

int(((a + b*asin(c*x))^2*(e - c*e*x)^(5/2))/(d + c*d*x)^(1/2),x)
 

Output:

int(((a + b*asin(c*x))^2*(e - c*e*x)^(5/2))/(d + c*d*x)^(1/2), x)
 

Reduce [F]

\[ \int \frac {(e-c e x)^{5/2} (a+b \arcsin (c x))^2}{\sqrt {d+c d x}} \, dx=\frac {\sqrt {e}\, e^{2} \left (-30 \mathit {asin} \left (\frac {\sqrt {-c x +1}}{\sqrt {2}}\right ) a^{2}+2 \sqrt {c x +1}\, \sqrt {-c x +1}\, a^{2} c^{2} x^{2}-9 \sqrt {c x +1}\, \sqrt {-c x +1}\, a^{2} c x +22 \sqrt {c x +1}\, \sqrt {-c x +1}\, a^{2}+12 \left (\int \frac {\sqrt {-c x +1}\, \mathit {asin} \left (c x \right ) x^{2}}{\sqrt {c x +1}}d x \right ) a b \,c^{3}-24 \left (\int \frac {\sqrt {-c x +1}\, \mathit {asin} \left (c x \right ) x}{\sqrt {c x +1}}d x \right ) a b \,c^{2}+12 \left (\int \frac {\sqrt {-c x +1}\, \mathit {asin} \left (c x \right )}{\sqrt {c x +1}}d x \right ) a b c +6 \left (\int \frac {\sqrt {-c x +1}\, \mathit {asin} \left (c x \right )^{2} x^{2}}{\sqrt {c x +1}}d x \right ) b^{2} c^{3}-12 \left (\int \frac {\sqrt {-c x +1}\, \mathit {asin} \left (c x \right )^{2} x}{\sqrt {c x +1}}d x \right ) b^{2} c^{2}+6 \left (\int \frac {\sqrt {-c x +1}\, \mathit {asin} \left (c x \right )^{2}}{\sqrt {c x +1}}d x \right ) b^{2} c \right )}{6 \sqrt {d}\, c} \] Input:

int((-c*e*x+e)^(5/2)*(a+b*asin(c*x))^2/(c*d*x+d)^(1/2),x)
 

Output:

(sqrt(e)*e**2*( - 30*asin(sqrt( - c*x + 1)/sqrt(2))*a**2 + 2*sqrt(c*x + 1) 
*sqrt( - c*x + 1)*a**2*c**2*x**2 - 9*sqrt(c*x + 1)*sqrt( - c*x + 1)*a**2*c 
*x + 22*sqrt(c*x + 1)*sqrt( - c*x + 1)*a**2 + 12*int((sqrt( - c*x + 1)*asi 
n(c*x)*x**2)/sqrt(c*x + 1),x)*a*b*c**3 - 24*int((sqrt( - c*x + 1)*asin(c*x 
)*x)/sqrt(c*x + 1),x)*a*b*c**2 + 12*int((sqrt( - c*x + 1)*asin(c*x))/sqrt( 
c*x + 1),x)*a*b*c + 6*int((sqrt( - c*x + 1)*asin(c*x)**2*x**2)/sqrt(c*x + 
1),x)*b**2*c**3 - 12*int((sqrt( - c*x + 1)*asin(c*x)**2*x)/sqrt(c*x + 1),x 
)*b**2*c**2 + 6*int((sqrt( - c*x + 1)*asin(c*x)**2)/sqrt(c*x + 1),x)*b**2* 
c))/(6*sqrt(d)*c)