\(\int \frac {1}{(a+b \arccos (1+d x^2))^2} \, dx\) [55]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 14, antiderivative size = 151 \[ \int \frac {1}{\left (a+b \arccos \left (1+d x^2\right )\right )^2} \, dx=\frac {\sqrt {-2 d x^2-d^2 x^4}}{2 b d x \left (a+b \arccos \left (1+d x^2\right )\right )}+\frac {x \operatorname {CosIntegral}\left (\frac {a+b \arccos \left (1+d x^2\right )}{2 b}\right ) \sin \left (\frac {a}{2 b}\right )}{2 \sqrt {2} b^2 \sqrt {-d x^2}}-\frac {x \cos \left (\frac {a}{2 b}\right ) \text {Si}\left (\frac {a+b \arccos \left (1+d x^2\right )}{2 b}\right )}{2 \sqrt {2} b^2 \sqrt {-d x^2}} \] Output:

1/2*(-d^2*x^4-2*d*x^2)^(1/2)/b/d/x/(a+b*arccos(d*x^2+1))+1/4*x*Ci(1/2*(a+b 
*arccos(d*x^2+1))/b)*sin(1/2*a/b)*2^(1/2)/b^2/(-d*x^2)^(1/2)-1/4*x*cos(1/2 
*a/b)*Si(1/2*(a+b*arccos(d*x^2+1))/b)*2^(1/2)/b^2/(-d*x^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.42 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.88 \[ \int \frac {1}{\left (a+b \arccos \left (1+d x^2\right )\right )^2} \, dx=\frac {\sqrt {-d x^2 \left (2+d x^2\right )} \left (\frac {b}{a+b \arccos \left (1+d x^2\right )}-\frac {\cos \left (\frac {1}{2} \arccos \left (1+d x^2\right )\right ) \left (\operatorname {CosIntegral}\left (\frac {a+b \arccos \left (1+d x^2\right )}{2 b}\right ) \sin \left (\frac {a}{2 b}\right )-\cos \left (\frac {a}{2 b}\right ) \text {Si}\left (\frac {a+b \arccos \left (1+d x^2\right )}{2 b}\right )\right )}{2+d x^2}\right )}{2 b^2 d x} \] Input:

Integrate[(a + b*ArcCos[1 + d*x^2])^(-2),x]
 

Output:

(Sqrt[-(d*x^2*(2 + d*x^2))]*(b/(a + b*ArcCos[1 + d*x^2]) - (Cos[ArcCos[1 + 
 d*x^2]/2]*(CosIntegral[(a + b*ArcCos[1 + d*x^2])/(2*b)]*Sin[a/(2*b)] - Co 
s[a/(2*b)]*SinIntegral[(a + b*ArcCos[1 + d*x^2])/(2*b)]))/(2 + d*x^2)))/(2 
*b^2*d*x)
 

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {5325}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+b \arccos \left (d x^2+1\right )\right )^2} \, dx\)

\(\Big \downarrow \) 5325

\(\displaystyle \frac {x \sin \left (\frac {a}{2 b}\right ) \operatorname {CosIntegral}\left (\frac {a+b \arccos \left (d x^2+1\right )}{2 b}\right )}{2 \sqrt {2} b^2 \sqrt {-d x^2}}-\frac {x \cos \left (\frac {a}{2 b}\right ) \text {Si}\left (\frac {a+b \arccos \left (d x^2+1\right )}{2 b}\right )}{2 \sqrt {2} b^2 \sqrt {-d x^2}}+\frac {\sqrt {-d^2 x^4-2 d x^2}}{2 b d x \left (a+b \arccos \left (d x^2+1\right )\right )}\)

Input:

Int[(a + b*ArcCos[1 + d*x^2])^(-2),x]
 

Output:

Sqrt[-2*d*x^2 - d^2*x^4]/(2*b*d*x*(a + b*ArcCos[1 + d*x^2])) + (x*CosInteg 
ral[(a + b*ArcCos[1 + d*x^2])/(2*b)]*Sin[a/(2*b)])/(2*Sqrt[2]*b^2*Sqrt[-(d 
*x^2)]) - (x*Cos[a/(2*b)]*SinIntegral[(a + b*ArcCos[1 + d*x^2])/(2*b)])/(2 
*Sqrt[2]*b^2*Sqrt[-(d*x^2)])
 

Defintions of rubi rules used

rule 5325
Int[((a_.) + ArcCos[1 + (d_.)*(x_)^2]*(b_.))^(-2), x_Symbol] :> Simp[Sqrt[- 
2*d*x^2 - d^2*x^4]/(2*b*d*x*(a + b*ArcCos[1 + d*x^2])), x] + (Simp[x*Sin[a/ 
(2*b)]*(CosIntegral[(a + b*ArcCos[1 + d*x^2])/(2*b)]/(2*Sqrt[2]*b^2*Sqrt[(- 
d)*x^2])), x] - Simp[x*Cos[a/(2*b)]*(SinIntegral[(a + b*ArcCos[1 + d*x^2])/ 
(2*b)]/(2*Sqrt[2]*b^2*Sqrt[(-d)*x^2])), x]) /; FreeQ[{a, b, d}, x]
 
Maple [F]

\[\int \frac {1}{{\left (a +b \arccos \left (d \,x^{2}+1\right )\right )}^{2}}d x\]

Input:

int(1/(a+b*arccos(d*x^2+1))^2,x)
 

Output:

int(1/(a+b*arccos(d*x^2+1))^2,x)
 

Fricas [F]

\[ \int \frac {1}{\left (a+b \arccos \left (1+d x^2\right )\right )^2} \, dx=\int { \frac {1}{{\left (b \arccos \left (d x^{2} + 1\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(1/(a+b*arccos(d*x^2+1))^2,x, algorithm="fricas")
 

Output:

integral(1/(b^2*arccos(d*x^2 + 1)^2 + 2*a*b*arccos(d*x^2 + 1) + a^2), x)
 

Sympy [F]

\[ \int \frac {1}{\left (a+b \arccos \left (1+d x^2\right )\right )^2} \, dx=\int \frac {1}{\left (a + b \operatorname {acos}{\left (d x^{2} + 1 \right )}\right )^{2}}\, dx \] Input:

integrate(1/(a+b*acos(d*x**2+1))**2,x)
 

Output:

Integral((a + b*acos(d*x**2 + 1))**(-2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\left (a+b \arccos \left (1+d x^2\right )\right )^2} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(1/(a+b*arccos(d*x^2+1))^2,x, algorithm="maxima")
 

Output:

Exception raised: RuntimeError >> ECL says: sign: argument cannot be imagi 
nary; found sqrt((-_SAGE_VAR_d*_SAGE_VAR_x^2)-2)
 

Giac [F]

\[ \int \frac {1}{\left (a+b \arccos \left (1+d x^2\right )\right )^2} \, dx=\int { \frac {1}{{\left (b \arccos \left (d x^{2} + 1\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(1/(a+b*arccos(d*x^2+1))^2,x, algorithm="giac")
 

Output:

integrate((b*arccos(d*x^2 + 1) + a)^(-2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+b \arccos \left (1+d x^2\right )\right )^2} \, dx=\int \frac {1}{{\left (a+b\,\mathrm {acos}\left (d\,x^2+1\right )\right )}^2} \,d x \] Input:

int(1/(a + b*acos(d*x^2 + 1))^2,x)
 

Output:

int(1/(a + b*acos(d*x^2 + 1))^2, x)
 

Reduce [F]

\[ \int \frac {1}{\left (a+b \arccos \left (1+d x^2\right )\right )^2} \, dx=\int \frac {1}{\mathit {acos} \left (d \,x^{2}+1\right )^{2} b^{2}+2 \mathit {acos} \left (d \,x^{2}+1\right ) a b +a^{2}}d x \] Input:

int(1/(a+b*acos(d*x^2+1))^2,x)
 

Output:

int(1/(acos(d*x**2 + 1)**2*b**2 + 2*acos(d*x**2 + 1)*a*b + a**2),x)