\(\int \frac {x^3}{\arccos (a x)^{7/2}} \, dx\) [114]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-2)]
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 12, antiderivative size = 190 \[ \int \frac {x^3}{\arccos (a x)^{7/2}} \, dx=\frac {2 x^3 \sqrt {1-a^2 x^2}}{5 a \arccos (a x)^{5/2}}-\frac {4 x^2}{5 a^2 \arccos (a x)^{3/2}}+\frac {16 x^4}{15 \arccos (a x)^{3/2}}+\frac {16 x \sqrt {1-a^2 x^2}}{5 a^3 \sqrt {\arccos (a x)}}-\frac {128 x^3 \sqrt {1-a^2 x^2}}{15 a \sqrt {\arccos (a x)}}+\frac {32 \sqrt {2 \pi } \operatorname {FresnelC}\left (2 \sqrt {\frac {2}{\pi }} \sqrt {\arccos (a x)}\right )}{15 a^4}+\frac {16 \sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {\arccos (a x)}}{\sqrt {\pi }}\right )}{15 a^4} \] Output:

2/5*x^3*(-a^2*x^2+1)^(1/2)/a/arccos(a*x)^(5/2)-4/5*x^2/a^2/arccos(a*x)^(3/ 
2)+16/15*x^4/arccos(a*x)^(3/2)+16/5*x*(-a^2*x^2+1)^(1/2)/a^3/arccos(a*x)^( 
1/2)-128/15*x^3*(-a^2*x^2+1)^(1/2)/a/arccos(a*x)^(1/2)+32/15*2^(1/2)*Pi^(1 
/2)*FresnelC(2*2^(1/2)/Pi^(1/2)*arccos(a*x)^(1/2))/a^4+16/15*Pi^(1/2)*Fres 
nelC(2*arccos(a*x)^(1/2)/Pi^(1/2))/a^4
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.79 (sec) , antiderivative size = 264, normalized size of antiderivative = 1.39 \[ \int \frac {x^3}{\arccos (a x)^{7/2}} \, dx=-\frac {-4 e^{-2 i \arccos (a x)} \left (1+e^{4 i \arccos (a x)} (1+4 i \arccos (a x))-4 i \arccos (a x)\right ) \arccos (a x)+\frac {16 \sqrt {2} \arccos (a x)^3 \Gamma \left (\frac {1}{2},-2 i \arccos (a x)\right )}{\sqrt {-i \arccos (a x)}}+16 i \sqrt {2} (i \arccos (a x))^{5/2} \Gamma \left (\frac {1}{2},2 i \arccos (a x)\right )-2 \arccos (a x) \left (2 e^{4 i \arccos (a x)} (1+8 i \arccos (a x))+32 (-i \arccos (a x))^{3/2} \Gamma \left (\frac {1}{2},-4 i \arccos (a x)\right )+2 e^{-4 i \arccos (a x)} \left (1-8 i \arccos (a x)+16 e^{4 i \arccos (a x)} (i \arccos (a x))^{3/2} \Gamma \left (\frac {1}{2},4 i \arccos (a x)\right )\right )\right )-6 \sin (2 \arccos (a x))-3 \sin (4 \arccos (a x))}{60 a^4 \arccos (a x)^{5/2}} \] Input:

Integrate[x^3/ArcCos[a*x]^(7/2),x]
 

Output:

-1/60*((-4*(1 + E^((4*I)*ArcCos[a*x])*(1 + (4*I)*ArcCos[a*x]) - (4*I)*ArcC 
os[a*x])*ArcCos[a*x])/E^((2*I)*ArcCos[a*x]) + (16*Sqrt[2]*ArcCos[a*x]^3*Ga 
mma[1/2, (-2*I)*ArcCos[a*x]])/Sqrt[(-I)*ArcCos[a*x]] + (16*I)*Sqrt[2]*(I*A 
rcCos[a*x])^(5/2)*Gamma[1/2, (2*I)*ArcCos[a*x]] - 2*ArcCos[a*x]*(2*E^((4*I 
)*ArcCos[a*x])*(1 + (8*I)*ArcCos[a*x]) + 32*((-I)*ArcCos[a*x])^(3/2)*Gamma 
[1/2, (-4*I)*ArcCos[a*x]] + (2*(1 - (8*I)*ArcCos[a*x] + 16*E^((4*I)*ArcCos 
[a*x])*(I*ArcCos[a*x])^(3/2)*Gamma[1/2, (4*I)*ArcCos[a*x]]))/E^((4*I)*ArcC 
os[a*x])) - 6*Sin[2*ArcCos[a*x]] - 3*Sin[4*ArcCos[a*x]])/(a^4*ArcCos[a*x]^ 
(5/2))
 

Rubi [A] (verified)

Time = 0.94 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.30, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {5145, 5223, 5143, 25, 2009, 3042, 3785, 3833}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3}{\arccos (a x)^{7/2}} \, dx\)

\(\Big \downarrow \) 5145

\(\displaystyle -\frac {6 \int \frac {x^2}{\sqrt {1-a^2 x^2} \arccos (a x)^{5/2}}dx}{5 a}+\frac {8}{5} a \int \frac {x^4}{\sqrt {1-a^2 x^2} \arccos (a x)^{5/2}}dx+\frac {2 x^3 \sqrt {1-a^2 x^2}}{5 a \arccos (a x)^{5/2}}\)

\(\Big \downarrow \) 5223

\(\displaystyle -\frac {6 \left (\frac {2 x^2}{3 a \arccos (a x)^{3/2}}-\frac {4 \int \frac {x}{\arccos (a x)^{3/2}}dx}{3 a}\right )}{5 a}+\frac {8}{5} a \left (\frac {2 x^4}{3 a \arccos (a x)^{3/2}}-\frac {8 \int \frac {x^3}{\arccos (a x)^{3/2}}dx}{3 a}\right )+\frac {2 x^3 \sqrt {1-a^2 x^2}}{5 a \arccos (a x)^{5/2}}\)

\(\Big \downarrow \) 5143

\(\displaystyle -\frac {6 \left (\frac {2 x^2}{3 a \arccos (a x)^{3/2}}-\frac {4 \left (\frac {2 \int -\frac {\cos (2 \arccos (a x))}{\sqrt {\arccos (a x)}}d\arccos (a x)}{a^2}+\frac {2 x \sqrt {1-a^2 x^2}}{a \sqrt {\arccos (a x)}}\right )}{3 a}\right )}{5 a}+\frac {8}{5} a \left (\frac {2 x^4}{3 a \arccos (a x)^{3/2}}-\frac {8 \left (\frac {2 \int \left (-\frac {\cos (2 \arccos (a x))}{2 \sqrt {\arccos (a x)}}-\frac {\cos (4 \arccos (a x))}{2 \sqrt {\arccos (a x)}}\right )d\arccos (a x)}{a^4}+\frac {2 x^3 \sqrt {1-a^2 x^2}}{a \sqrt {\arccos (a x)}}\right )}{3 a}\right )+\frac {2 x^3 \sqrt {1-a^2 x^2}}{5 a \arccos (a x)^{5/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {6 \left (\frac {2 x^2}{3 a \arccos (a x)^{3/2}}-\frac {4 \left (\frac {2 x \sqrt {1-a^2 x^2}}{a \sqrt {\arccos (a x)}}-\frac {2 \int \frac {\cos (2 \arccos (a x))}{\sqrt {\arccos (a x)}}d\arccos (a x)}{a^2}\right )}{3 a}\right )}{5 a}+\frac {8}{5} a \left (\frac {2 x^4}{3 a \arccos (a x)^{3/2}}-\frac {8 \left (\frac {2 \int \left (-\frac {\cos (2 \arccos (a x))}{2 \sqrt {\arccos (a x)}}-\frac {\cos (4 \arccos (a x))}{2 \sqrt {\arccos (a x)}}\right )d\arccos (a x)}{a^4}+\frac {2 x^3 \sqrt {1-a^2 x^2}}{a \sqrt {\arccos (a x)}}\right )}{3 a}\right )+\frac {2 x^3 \sqrt {1-a^2 x^2}}{5 a \arccos (a x)^{5/2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {6 \left (\frac {2 x^2}{3 a \arccos (a x)^{3/2}}-\frac {4 \left (\frac {2 x \sqrt {1-a^2 x^2}}{a \sqrt {\arccos (a x)}}-\frac {2 \int \frac {\cos (2 \arccos (a x))}{\sqrt {\arccos (a x)}}d\arccos (a x)}{a^2}\right )}{3 a}\right )}{5 a}+\frac {2 x^3 \sqrt {1-a^2 x^2}}{5 a \arccos (a x)^{5/2}}+\frac {8}{5} a \left (\frac {2 x^4}{3 a \arccos (a x)^{3/2}}-\frac {8 \left (\frac {2 \left (-\frac {1}{2} \sqrt {\frac {\pi }{2}} \operatorname {FresnelC}\left (2 \sqrt {\frac {2}{\pi }} \sqrt {\arccos (a x)}\right )-\frac {1}{2} \sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {\arccos (a x)}}{\sqrt {\pi }}\right )\right )}{a^4}+\frac {2 x^3 \sqrt {1-a^2 x^2}}{a \sqrt {\arccos (a x)}}\right )}{3 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {6 \left (\frac {2 x^2}{3 a \arccos (a x)^{3/2}}-\frac {4 \left (\frac {2 x \sqrt {1-a^2 x^2}}{a \sqrt {\arccos (a x)}}-\frac {2 \int \frac {\sin \left (2 \arccos (a x)+\frac {\pi }{2}\right )}{\sqrt {\arccos (a x)}}d\arccos (a x)}{a^2}\right )}{3 a}\right )}{5 a}+\frac {2 x^3 \sqrt {1-a^2 x^2}}{5 a \arccos (a x)^{5/2}}+\frac {8}{5} a \left (\frac {2 x^4}{3 a \arccos (a x)^{3/2}}-\frac {8 \left (\frac {2 \left (-\frac {1}{2} \sqrt {\frac {\pi }{2}} \operatorname {FresnelC}\left (2 \sqrt {\frac {2}{\pi }} \sqrt {\arccos (a x)}\right )-\frac {1}{2} \sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {\arccos (a x)}}{\sqrt {\pi }}\right )\right )}{a^4}+\frac {2 x^3 \sqrt {1-a^2 x^2}}{a \sqrt {\arccos (a x)}}\right )}{3 a}\right )\)

\(\Big \downarrow \) 3785

\(\displaystyle -\frac {6 \left (\frac {2 x^2}{3 a \arccos (a x)^{3/2}}-\frac {4 \left (\frac {2 x \sqrt {1-a^2 x^2}}{a \sqrt {\arccos (a x)}}-\frac {4 \int \cos (2 \arccos (a x))d\sqrt {\arccos (a x)}}{a^2}\right )}{3 a}\right )}{5 a}+\frac {2 x^3 \sqrt {1-a^2 x^2}}{5 a \arccos (a x)^{5/2}}+\frac {8}{5} a \left (\frac {2 x^4}{3 a \arccos (a x)^{3/2}}-\frac {8 \left (\frac {2 \left (-\frac {1}{2} \sqrt {\frac {\pi }{2}} \operatorname {FresnelC}\left (2 \sqrt {\frac {2}{\pi }} \sqrt {\arccos (a x)}\right )-\frac {1}{2} \sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {\arccos (a x)}}{\sqrt {\pi }}\right )\right )}{a^4}+\frac {2 x^3 \sqrt {1-a^2 x^2}}{a \sqrt {\arccos (a x)}}\right )}{3 a}\right )\)

\(\Big \downarrow \) 3833

\(\displaystyle -\frac {6 \left (\frac {2 x^2}{3 a \arccos (a x)^{3/2}}-\frac {4 \left (\frac {2 x \sqrt {1-a^2 x^2}}{a \sqrt {\arccos (a x)}}-\frac {2 \sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {\arccos (a x)}}{\sqrt {\pi }}\right )}{a^2}\right )}{3 a}\right )}{5 a}+\frac {2 x^3 \sqrt {1-a^2 x^2}}{5 a \arccos (a x)^{5/2}}+\frac {8}{5} a \left (\frac {2 x^4}{3 a \arccos (a x)^{3/2}}-\frac {8 \left (\frac {2 \left (-\frac {1}{2} \sqrt {\frac {\pi }{2}} \operatorname {FresnelC}\left (2 \sqrt {\frac {2}{\pi }} \sqrt {\arccos (a x)}\right )-\frac {1}{2} \sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {\arccos (a x)}}{\sqrt {\pi }}\right )\right )}{a^4}+\frac {2 x^3 \sqrt {1-a^2 x^2}}{a \sqrt {\arccos (a x)}}\right )}{3 a}\right )\)

Input:

Int[x^3/ArcCos[a*x]^(7/2),x]
 

Output:

(2*x^3*Sqrt[1 - a^2*x^2])/(5*a*ArcCos[a*x]^(5/2)) - (6*((2*x^2)/(3*a*ArcCo 
s[a*x]^(3/2)) - (4*((2*x*Sqrt[1 - a^2*x^2])/(a*Sqrt[ArcCos[a*x]]) - (2*Sqr 
t[Pi]*FresnelC[(2*Sqrt[ArcCos[a*x]])/Sqrt[Pi]])/a^2))/(3*a)))/(5*a) + (8*a 
*((2*x^4)/(3*a*ArcCos[a*x]^(3/2)) - (8*((2*x^3*Sqrt[1 - a^2*x^2])/(a*Sqrt[ 
ArcCos[a*x]]) + (2*(-1/2*(Sqrt[Pi/2]*FresnelC[2*Sqrt[2/Pi]*Sqrt[ArcCos[a*x 
]]]) - (Sqrt[Pi]*FresnelC[(2*Sqrt[ArcCos[a*x]])/Sqrt[Pi]])/2))/a^4))/(3*a) 
))/5
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3785
Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> S 
imp[2/d   Subst[Int[Cos[f*(x^2/d)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, 
d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
 

rule 3833
Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[ 
d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
 

rule 5143
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[( 
-x^m)*Sqrt[1 - c^2*x^2]*((a + b*ArcCos[c*x])^(n + 1)/(b*c*(n + 1))), x] - S 
imp[1/(b^2*c^(m + 1)*(n + 1))   Subst[Int[ExpandTrigReduce[x^(n + 1), Cos[- 
a/b + x/b]^(m - 1)*(m - (m + 1)*Cos[-a/b + x/b]^2), x], x], x, a + b*ArcCos 
[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1]
 

rule 5145
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[( 
-x^m)*Sqrt[1 - c^2*x^2]*((a + b*ArcCos[c*x])^(n + 1)/(b*c*(n + 1))), x] + ( 
-Simp[c*((m + 1)/(b*(n + 1)))   Int[x^(m + 1)*((a + b*ArcCos[c*x])^(n + 1)/ 
Sqrt[1 - c^2*x^2]), x], x] + Simp[m/(b*c*(n + 1))   Int[x^(m - 1)*((a + b*A 
rcCos[c*x])^(n + 1)/Sqrt[1 - c^2*x^2]), x], x]) /; FreeQ[{a, b, c}, x] && I 
GtQ[m, 0] && LtQ[n, -2]
 

rule 5223
Int[(((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) 
+ (e_.)*(x_)^2], x_Symbol] :> Simp[(-(f*x)^m/(b*c*(n + 1)))*Simp[Sqrt[1 - c 
^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcCos[c*x])^(n + 1), x] + Simp[f*(m/(b*c*( 
n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]   Int[(f*x)^(m - 1)*(a + b 
*ArcCos[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2 
*d + e, 0] && LtQ[n, -1]
 
Maple [A] (verified)

Time = 0.16 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.73

method result size
default \(-\frac {-128 \sqrt {2}\, \sqrt {\pi }\, \operatorname {FresnelC}\left (\frac {2 \sqrt {2}\, \sqrt {\arccos \left (a x \right )}}{\sqrt {\pi }}\right ) \arccos \left (a x \right )^{\frac {5}{2}}-64 \sqrt {\pi }\, \operatorname {FresnelC}\left (\frac {2 \sqrt {\arccos \left (a x \right )}}{\sqrt {\pi }}\right ) \arccos \left (a x \right )^{\frac {5}{2}}+32 \sin \left (2 \arccos \left (a x \right )\right ) \arccos \left (a x \right )^{2}+64 \sin \left (4 \arccos \left (a x \right )\right ) \arccos \left (a x \right )^{2}-8 \cos \left (2 \arccos \left (a x \right )\right ) \arccos \left (a x \right )-8 \arccos \left (a x \right ) \cos \left (4 \arccos \left (a x \right )\right )-6 \sin \left (2 \arccos \left (a x \right )\right )-3 \sin \left (4 \arccos \left (a x \right )\right )}{60 a^{4} \arccos \left (a x \right )^{\frac {5}{2}}}\) \(139\)

Input:

int(x^3/arccos(a*x)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-1/60/a^4*(-128*2^(1/2)*Pi^(1/2)*FresnelC(2*2^(1/2)/Pi^(1/2)*arccos(a*x)^( 
1/2))*arccos(a*x)^(5/2)-64*Pi^(1/2)*FresnelC(2*arccos(a*x)^(1/2)/Pi^(1/2)) 
*arccos(a*x)^(5/2)+32*sin(2*arccos(a*x))*arccos(a*x)^2+64*sin(4*arccos(a*x 
))*arccos(a*x)^2-8*cos(2*arccos(a*x))*arccos(a*x)-8*arccos(a*x)*cos(4*arcc 
os(a*x))-6*sin(2*arccos(a*x))-3*sin(4*arccos(a*x)))/arccos(a*x)^(5/2)
 

Fricas [F(-2)]

Exception generated. \[ \int \frac {x^3}{\arccos (a x)^{7/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^3/arccos(a*x)^(7/2),x, algorithm="fricas")
 

Output:

Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 

Sympy [F]

\[ \int \frac {x^3}{\arccos (a x)^{7/2}} \, dx=\int \frac {x^{3}}{\operatorname {acos}^{\frac {7}{2}}{\left (a x \right )}}\, dx \] Input:

integrate(x**3/acos(a*x)**(7/2),x)
 

Output:

Integral(x**3/acos(a*x)**(7/2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^3}{\arccos (a x)^{7/2}} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(x^3/arccos(a*x)^(7/2),x, algorithm="maxima")
 

Output:

Exception raised: RuntimeError >> ECL says: expt: undefined: 0 to a negati 
ve exponent.
 

Giac [F(-2)]

Exception generated. \[ \int \frac {x^3}{\arccos (a x)^{7/2}} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(x^3/arccos(a*x)^(7/2),x, algorithm="giac")
 

Output:

Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^3}{\arccos (a x)^{7/2}} \, dx=\int \frac {x^3}{{\mathrm {acos}\left (a\,x\right )}^{7/2}} \,d x \] Input:

int(x^3/acos(a*x)^(7/2),x)
                                                                                    
                                                                                    
 

Output:

int(x^3/acos(a*x)^(7/2), x)
 

Reduce [F]

\[ \int \frac {x^3}{\arccos (a x)^{7/2}} \, dx=\frac {-15 \mathit {acos} \left (a x \right )^{3} \left (\int \frac {\sqrt {\mathit {acos} \left (a x \right )}\, x^{3}}{\mathit {acos} \left (a x \right )^{4} a^{2} x^{2}-\mathit {acos} \left (a x \right )^{4}}d x \right ) a^{4}+15 \mathit {acos} \left (a x \right )^{3} \left (\int \frac {\sqrt {\mathit {acos} \left (a x \right )}\, x}{\mathit {acos} \left (a x \right )^{4} a^{2} x^{2}-\mathit {acos} \left (a x \right )^{4}}d x \right ) a^{2}-16 \mathit {acos} \left (a x \right )^{3} \left (\int \frac {\sqrt {-a^{2} x^{2}+1}\, \sqrt {\mathit {acos} \left (a x \right )}\, x^{4}}{\mathit {acos} \left (a x \right )^{3} a^{2} x^{2}-\mathit {acos} \left (a x \right )^{3}}d x \right ) a^{5}-4 \sqrt {\mathit {acos} \left (a x \right )}\, \mathit {acos} \left (a x \right )+4 \sqrt {-a^{2} x^{2}+1}\, \sqrt {\mathit {acos} \left (a x \right )}\, a^{3} x^{3}+6 \sqrt {-a^{2} x^{2}+1}\, \sqrt {\mathit {acos} \left (a x \right )}\, a x}{10 \mathit {acos} \left (a x \right )^{3} a^{4}} \] Input:

int(x^3/acos(a*x)^(7/2),x)
 

Output:

( - 15*acos(a*x)**3*int((sqrt(acos(a*x))*x**3)/(acos(a*x)**4*a**2*x**2 - a 
cos(a*x)**4),x)*a**4 + 15*acos(a*x)**3*int((sqrt(acos(a*x))*x)/(acos(a*x)* 
*4*a**2*x**2 - acos(a*x)**4),x)*a**2 - 16*acos(a*x)**3*int((sqrt( - a**2*x 
**2 + 1)*sqrt(acos(a*x))*x**4)/(acos(a*x)**3*a**2*x**2 - acos(a*x)**3),x)* 
a**5 - 4*sqrt(acos(a*x))*acos(a*x) + 4*sqrt( - a**2*x**2 + 1)*sqrt(acos(a* 
x))*a**3*x**3 + 6*sqrt( - a**2*x**2 + 1)*sqrt(acos(a*x))*a*x)/(10*acos(a*x 
)**3*a**4)