\(\int \frac {\arccos (a x)^3}{x} \, dx\) [27]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 10, antiderivative size = 101 \[ \int \frac {\arccos (a x)^3}{x} \, dx=-\frac {1}{4} i \arccos (a x)^4+\arccos (a x)^3 \log \left (1+e^{2 i \arccos (a x)}\right )-\frac {3}{2} i \arccos (a x)^2 \operatorname {PolyLog}\left (2,-e^{2 i \arccos (a x)}\right )+\frac {3}{2} \arccos (a x) \operatorname {PolyLog}\left (3,-e^{2 i \arccos (a x)}\right )+\frac {3}{4} i \operatorname {PolyLog}\left (4,-e^{2 i \arccos (a x)}\right ) \] Output:

-1/4*I*arccos(a*x)^4+arccos(a*x)^3*ln(1+(a*x+I*(-a^2*x^2+1)^(1/2))^2)-3/2* 
I*arccos(a*x)^2*polylog(2,-(a*x+I*(-a^2*x^2+1)^(1/2))^2)+3/2*arccos(a*x)*p 
olylog(3,-(a*x+I*(-a^2*x^2+1)^(1/2))^2)+3/4*I*polylog(4,-(a*x+I*(-a^2*x^2+ 
1)^(1/2))^2)
 

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.00 \[ \int \frac {\arccos (a x)^3}{x} \, dx=-\frac {1}{4} i \arccos (a x)^4+\arccos (a x)^3 \log \left (1+e^{2 i \arccos (a x)}\right )-\frac {3}{2} i \arccos (a x)^2 \operatorname {PolyLog}\left (2,-e^{2 i \arccos (a x)}\right )+\frac {3}{2} \arccos (a x) \operatorname {PolyLog}\left (3,-e^{2 i \arccos (a x)}\right )+\frac {3}{4} i \operatorname {PolyLog}\left (4,-e^{2 i \arccos (a x)}\right ) \] Input:

Integrate[ArcCos[a*x]^3/x,x]
 

Output:

(-1/4*I)*ArcCos[a*x]^4 + ArcCos[a*x]^3*Log[1 + E^((2*I)*ArcCos[a*x])] - (( 
3*I)/2)*ArcCos[a*x]^2*PolyLog[2, -E^((2*I)*ArcCos[a*x])] + (3*ArcCos[a*x]* 
PolyLog[3, -E^((2*I)*ArcCos[a*x])])/2 + ((3*I)/4)*PolyLog[4, -E^((2*I)*Arc 
Cos[a*x])]
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.22, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.800, Rules used = {5137, 3042, 4202, 2620, 3011, 7163, 2720, 7143}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\arccos (a x)^3}{x} \, dx\)

\(\Big \downarrow \) 5137

\(\displaystyle -\int \frac {\sqrt {1-a^2 x^2} \arccos (a x)^3}{a x}d\arccos (a x)\)

\(\Big \downarrow \) 3042

\(\displaystyle -\int \arccos (a x)^3 \tan (\arccos (a x))d\arccos (a x)\)

\(\Big \downarrow \) 4202

\(\displaystyle 2 i \int \frac {e^{2 i \arccos (a x)} \arccos (a x)^3}{1+e^{2 i \arccos (a x)}}d\arccos (a x)-\frac {1}{4} i \arccos (a x)^4\)

\(\Big \downarrow \) 2620

\(\displaystyle 2 i \left (\frac {3}{2} i \int \arccos (a x)^2 \log \left (1+e^{2 i \arccos (a x)}\right )d\arccos (a x)-\frac {1}{2} i \arccos (a x)^3 \log \left (1+e^{2 i \arccos (a x)}\right )\right )-\frac {1}{4} i \arccos (a x)^4\)

\(\Big \downarrow \) 3011

\(\displaystyle 2 i \left (\frac {3}{2} i \left (\frac {1}{2} i \arccos (a x)^2 \operatorname {PolyLog}\left (2,-e^{2 i \arccos (a x)}\right )-i \int \arccos (a x) \operatorname {PolyLog}\left (2,-e^{2 i \arccos (a x)}\right )d\arccos (a x)\right )-\frac {1}{2} i \arccos (a x)^3 \log \left (1+e^{2 i \arccos (a x)}\right )\right )-\frac {1}{4} i \arccos (a x)^4\)

\(\Big \downarrow \) 7163

\(\displaystyle 2 i \left (\frac {3}{2} i \left (\frac {1}{2} i \arccos (a x)^2 \operatorname {PolyLog}\left (2,-e^{2 i \arccos (a x)}\right )-i \left (\frac {1}{2} i \int \operatorname {PolyLog}\left (3,-e^{2 i \arccos (a x)}\right )d\arccos (a x)-\frac {1}{2} i \arccos (a x) \operatorname {PolyLog}\left (3,-e^{2 i \arccos (a x)}\right )\right )\right )-\frac {1}{2} i \arccos (a x)^3 \log \left (1+e^{2 i \arccos (a x)}\right )\right )-\frac {1}{4} i \arccos (a x)^4\)

\(\Big \downarrow \) 2720

\(\displaystyle 2 i \left (\frac {3}{2} i \left (\frac {1}{2} i \arccos (a x)^2 \operatorname {PolyLog}\left (2,-e^{2 i \arccos (a x)}\right )-i \left (\frac {1}{4} \int e^{-2 i \arccos (a x)} \operatorname {PolyLog}\left (3,-e^{2 i \arccos (a x)}\right )de^{2 i \arccos (a x)}-\frac {1}{2} i \arccos (a x) \operatorname {PolyLog}\left (3,-e^{2 i \arccos (a x)}\right )\right )\right )-\frac {1}{2} i \arccos (a x)^3 \log \left (1+e^{2 i \arccos (a x)}\right )\right )-\frac {1}{4} i \arccos (a x)^4\)

\(\Big \downarrow \) 7143

\(\displaystyle 2 i \left (\frac {3}{2} i \left (\frac {1}{2} i \arccos (a x)^2 \operatorname {PolyLog}\left (2,-e^{2 i \arccos (a x)}\right )-i \left (\frac {1}{4} \operatorname {PolyLog}\left (4,-e^{2 i \arccos (a x)}\right )-\frac {1}{2} i \arccos (a x) \operatorname {PolyLog}\left (3,-e^{2 i \arccos (a x)}\right )\right )\right )-\frac {1}{2} i \arccos (a x)^3 \log \left (1+e^{2 i \arccos (a x)}\right )\right )-\frac {1}{4} i \arccos (a x)^4\)

Input:

Int[ArcCos[a*x]^3/x,x]
 

Output:

(-1/4*I)*ArcCos[a*x]^4 + (2*I)*((-1/2*I)*ArcCos[a*x]^3*Log[1 + E^((2*I)*Ar 
cCos[a*x])] + ((3*I)/2)*((I/2)*ArcCos[a*x]^2*PolyLog[2, -E^((2*I)*ArcCos[a 
*x])] - I*((-1/2*I)*ArcCos[a*x]*PolyLog[3, -E^((2*I)*ArcCos[a*x])] + PolyL 
og[4, -E^((2*I)*ArcCos[a*x])]/4)))
 

Defintions of rubi rules used

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2720
Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Simp[v/D[v, x] 
   Subst[Int[FunctionOfExponentialFunction[u, x]/x, x], x, v], x]] /; Funct 
ionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; FreeQ 
[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x)) 
*(F_)[v_] /; FreeQ[{a, b, c}, x] && InverseFunctionQ[F[x]]]
 

rule 3011
Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.) 
*(x_))^(m_.), x_Symbol] :> Simp[(-(f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + 
b*x)))^n]/(b*c*n*Log[F])), x] + Simp[g*(m/(b*c*n*Log[F]))   Int[(f + g*x)^( 
m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e 
, f, g, n}, x] && GtQ[m, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4202
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[I 
*((c + d*x)^(m + 1)/(d*(m + 1))), x] - Simp[2*I   Int[(c + d*x)^m*(E^(2*I*( 
e + f*x))/(1 + E^(2*I*(e + f*x)))), x], x] /; FreeQ[{c, d, e, f}, x] && IGt 
Q[m, 0]
 

rule 5137
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> -Subst[Int[ 
(a + b*x)^n*Tan[x], x], x, ArcCos[c*x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0 
]
 

rule 7143
Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_S 
ymbol] :> Simp[PolyLog[n + 1, c*(a + b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d 
, e, n, p}, x] && EqQ[b*d, a*e]
 

rule 7163
Int[((e_.) + (f_.)*(x_))^(m_.)*PolyLog[n_, (d_.)*((F_)^((c_.)*((a_.) + (b_. 
)*(x_))))^(p_.)], x_Symbol] :> Simp[(e + f*x)^m*(PolyLog[n + 1, d*(F^(c*(a 
+ b*x)))^p]/(b*c*p*Log[F])), x] - Simp[f*(m/(b*c*p*Log[F]))   Int[(e + f*x) 
^(m - 1)*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p], x], x] /; FreeQ[{F, a, b, c 
, d, e, f, n, p}, x] && GtQ[m, 0]
 
Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.34

method result size
derivativedivides \(-\frac {i \arccos \left (a x \right )^{4}}{4}+\arccos \left (a x \right )^{3} \ln \left (1+\left (a x +i \sqrt {-a^{2} x^{2}+1}\right )^{2}\right )-\frac {3 i \arccos \left (a x \right )^{2} \operatorname {polylog}\left (2, -\left (a x +i \sqrt {-a^{2} x^{2}+1}\right )^{2}\right )}{2}+\frac {3 \arccos \left (a x \right ) \operatorname {polylog}\left (3, -\left (a x +i \sqrt {-a^{2} x^{2}+1}\right )^{2}\right )}{2}+\frac {3 i \operatorname {polylog}\left (4, -\left (a x +i \sqrt {-a^{2} x^{2}+1}\right )^{2}\right )}{4}\) \(135\)
default \(-\frac {i \arccos \left (a x \right )^{4}}{4}+\arccos \left (a x \right )^{3} \ln \left (1+\left (a x +i \sqrt {-a^{2} x^{2}+1}\right )^{2}\right )-\frac {3 i \arccos \left (a x \right )^{2} \operatorname {polylog}\left (2, -\left (a x +i \sqrt {-a^{2} x^{2}+1}\right )^{2}\right )}{2}+\frac {3 \arccos \left (a x \right ) \operatorname {polylog}\left (3, -\left (a x +i \sqrt {-a^{2} x^{2}+1}\right )^{2}\right )}{2}+\frac {3 i \operatorname {polylog}\left (4, -\left (a x +i \sqrt {-a^{2} x^{2}+1}\right )^{2}\right )}{4}\) \(135\)

Input:

int(arccos(a*x)^3/x,x,method=_RETURNVERBOSE)
 

Output:

-1/4*I*arccos(a*x)^4+arccos(a*x)^3*ln(1+(a*x+I*(-a^2*x^2+1)^(1/2))^2)-3/2* 
I*arccos(a*x)^2*polylog(2,-(a*x+I*(-a^2*x^2+1)^(1/2))^2)+3/2*arccos(a*x)*p 
olylog(3,-(a*x+I*(-a^2*x^2+1)^(1/2))^2)+3/4*I*polylog(4,-(a*x+I*(-a^2*x^2+ 
1)^(1/2))^2)
 

Fricas [F]

\[ \int \frac {\arccos (a x)^3}{x} \, dx=\int { \frac {\arccos \left (a x\right )^{3}}{x} \,d x } \] Input:

integrate(arccos(a*x)^3/x,x, algorithm="fricas")
 

Output:

integral(arccos(a*x)^3/x, x)
 

Sympy [F]

\[ \int \frac {\arccos (a x)^3}{x} \, dx=\int \frac {\operatorname {acos}^{3}{\left (a x \right )}}{x}\, dx \] Input:

integrate(acos(a*x)**3/x,x)
 

Output:

Integral(acos(a*x)**3/x, x)
 

Maxima [F]

\[ \int \frac {\arccos (a x)^3}{x} \, dx=\int { \frac {\arccos \left (a x\right )^{3}}{x} \,d x } \] Input:

integrate(arccos(a*x)^3/x,x, algorithm="maxima")
 

Output:

integrate(arccos(a*x)^3/x, x)
 

Giac [F]

\[ \int \frac {\arccos (a x)^3}{x} \, dx=\int { \frac {\arccos \left (a x\right )^{3}}{x} \,d x } \] Input:

integrate(arccos(a*x)^3/x,x, algorithm="giac")
 

Output:

integrate(arccos(a*x)^3/x, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\arccos (a x)^3}{x} \, dx=\int \frac {{\mathrm {acos}\left (a\,x\right )}^3}{x} \,d x \] Input:

int(acos(a*x)^3/x,x)
                                                                                    
                                                                                    
 

Output:

int(acos(a*x)^3/x, x)
 

Reduce [F]

\[ \int \frac {\arccos (a x)^3}{x} \, dx=\int \frac {\mathit {acos} \left (a x \right )^{3}}{x}d x \] Input:

int(acos(a*x)^3/x,x)
 

Output:

int(acos(a*x)**3/x,x)