\(\int \frac {(a+b \arccos (c x))^2}{x^2 (d-c^2 d x^2)^{5/2}} \, dx\) [263]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 29, antiderivative size = 452 \[ \int \frac {(a+b \arccos (c x))^2}{x^2 \left (d-c^2 d x^2\right )^{5/2}} \, dx=\frac {b^2 c^2 x}{3 d^2 \sqrt {d-c^2 d x^2}}-\frac {b c (a+b \arccos (c x))}{3 d^2 \sqrt {1-c^2 x^2} \sqrt {d-c^2 d x^2}}-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}+\frac {4 c^2 x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {8 c^2 x (a+b \arccos (c x))^2}{3 d^2 \sqrt {d-c^2 d x^2}}-\frac {8 i c \sqrt {1-c^2 x^2} (a+b \arccos (c x))^2}{3 d^2 \sqrt {d-c^2 d x^2}}-\frac {4 b c \sqrt {1-c^2 x^2} (a+b \arccos (c x)) \text {arctanh}\left (e^{2 i \arccos (c x)}\right )}{d^2 \sqrt {d-c^2 d x^2}}+\frac {16 b c \sqrt {1-c^2 x^2} (a+b \arccos (c x)) \log \left (1+e^{2 i \arccos (c x)}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}-\frac {5 i b^2 c \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,-e^{2 i \arccos (c x)}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}-\frac {i b^2 c \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )}{d^2 \sqrt {d-c^2 d x^2}} \] Output:

1/3*b^2*c^2*x/d^2/(-c^2*d*x^2+d)^(1/2)-1/3*b*c*(a+b*arccos(c*x))/d^2/(-c^2 
*x^2+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)-(a+b*arccos(c*x))^2/d/x/(-c^2*d*x^2+d)^ 
(3/2)+4/3*c^2*x*(a+b*arccos(c*x))^2/d/(-c^2*d*x^2+d)^(3/2)+8/3*c^2*x*(a+b* 
arccos(c*x))^2/d^2/(-c^2*d*x^2+d)^(1/2)-8/3*I*c*(-c^2*x^2+1)^(1/2)*(a+b*ar 
ccos(c*x))^2/d^2/(-c^2*d*x^2+d)^(1/2)-4*b*c*(-c^2*x^2+1)^(1/2)*(a+b*arccos 
(c*x))*arctanh((c*x+I*(-c^2*x^2+1)^(1/2))^2)/d^2/(-c^2*d*x^2+d)^(1/2)+16/3 
*b*c*(-c^2*x^2+1)^(1/2)*(a+b*arccos(c*x))*ln(1+(c*x+I*(-c^2*x^2+1)^(1/2))^ 
2)/d^2/(-c^2*d*x^2+d)^(1/2)-5/3*I*b^2*c*(-c^2*x^2+1)^(1/2)*polylog(2,-(c*x 
+I*(-c^2*x^2+1)^(1/2))^2)/d^2/(-c^2*d*x^2+d)^(1/2)-I*b^2*c*(-c^2*x^2+1)^(1 
/2)*polylog(2,(c*x+I*(-c^2*x^2+1)^(1/2))^2)/d^2/(-c^2*d*x^2+d)^(1/2)
 

Mathematica [A] (verified)

Time = 1.95 (sec) , antiderivative size = 434, normalized size of antiderivative = 0.96 \[ \int \frac {(a+b \arccos (c x))^2}{x^2 \left (d-c^2 d x^2\right )^{5/2}} \, dx=-\frac {3 a^2-12 a^2 c^2 x^2-b^2 c^2 x^2+8 a^2 c^4 x^4+b^2 c^4 x^4-a b c x \sqrt {1-c^2 x^2}+6 a b \arccos (c x)-24 a b c^2 x^2 \arccos (c x)+16 a b c^4 x^4 \arccos (c x)-b^2 c x \sqrt {1-c^2 x^2} \arccos (c x)+3 b^2 \arccos (c x)^2-12 b^2 c^2 x^2 \arccos (c x)^2+8 b^2 c^4 x^4 \arccos (c x)^2-8 i b^2 c x \left (1-c^2 x^2\right )^{3/2} \arccos (c x)^2+10 b^2 c x \left (1-c^2 x^2\right )^{3/2} \arccos (c x) \log \left (1-e^{2 i \arccos (c x)}\right )+6 b^2 c x \left (1-c^2 x^2\right )^{3/2} \arccos (c x) \log \left (1+e^{2 i \arccos (c x)}\right )+6 a b c x \left (1-c^2 x^2\right )^{3/2} \log (c x)+5 a b c x \left (1-c^2 x^2\right )^{3/2} \log \left (1-c^2 x^2\right )-3 i b^2 c x \left (1-c^2 x^2\right )^{3/2} \operatorname {PolyLog}\left (2,-e^{2 i \arccos (c x)}\right )-5 i b^2 c x \left (1-c^2 x^2\right )^{3/2} \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )}{3 d x \left (d-c^2 d x^2\right )^{3/2}} \] Input:

Integrate[(a + b*ArcCos[c*x])^2/(x^2*(d - c^2*d*x^2)^(5/2)),x]
 

Output:

-1/3*(3*a^2 - 12*a^2*c^2*x^2 - b^2*c^2*x^2 + 8*a^2*c^4*x^4 + b^2*c^4*x^4 - 
 a*b*c*x*Sqrt[1 - c^2*x^2] + 6*a*b*ArcCos[c*x] - 24*a*b*c^2*x^2*ArcCos[c*x 
] + 16*a*b*c^4*x^4*ArcCos[c*x] - b^2*c*x*Sqrt[1 - c^2*x^2]*ArcCos[c*x] + 3 
*b^2*ArcCos[c*x]^2 - 12*b^2*c^2*x^2*ArcCos[c*x]^2 + 8*b^2*c^4*x^4*ArcCos[c 
*x]^2 - (8*I)*b^2*c*x*(1 - c^2*x^2)^(3/2)*ArcCos[c*x]^2 + 10*b^2*c*x*(1 - 
c^2*x^2)^(3/2)*ArcCos[c*x]*Log[1 - E^((2*I)*ArcCos[c*x])] + 6*b^2*c*x*(1 - 
 c^2*x^2)^(3/2)*ArcCos[c*x]*Log[1 + E^((2*I)*ArcCos[c*x])] + 6*a*b*c*x*(1 
- c^2*x^2)^(3/2)*Log[c*x] + 5*a*b*c*x*(1 - c^2*x^2)^(3/2)*Log[1 - c^2*x^2] 
 - (3*I)*b^2*c*x*(1 - c^2*x^2)^(3/2)*PolyLog[2, -E^((2*I)*ArcCos[c*x])] - 
(5*I)*b^2*c*x*(1 - c^2*x^2)^(3/2)*PolyLog[2, E^((2*I)*ArcCos[c*x])])/(d*x* 
(d - c^2*d*x^2)^(3/2))
 

Rubi [A] (verified)

Time = 3.28 (sec) , antiderivative size = 455, normalized size of antiderivative = 1.01, number of steps used = 22, number of rules used = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.724, Rules used = {5205, 5163, 5161, 5181, 3042, 25, 4200, 25, 2620, 2715, 2838, 5183, 208, 5209, 208, 5185, 4919, 3042, 4671, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \arccos (c x))^2}{x^2 \left (d-c^2 d x^2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 5205

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {a+b \arccos (c x)}{x \left (1-c^2 x^2\right )^2}dx}{d^2 \sqrt {d-c^2 d x^2}}+4 c^2 \int \frac {(a+b \arccos (c x))^2}{\left (d-c^2 d x^2\right )^{5/2}}dx-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 5163

\(\displaystyle 4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arccos (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \int \frac {(a+b \arccos (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}}dx}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {a+b \arccos (c x)}{x \left (1-c^2 x^2\right )^2}dx}{d^2 \sqrt {d-c^2 d x^2}}-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 5161

\(\displaystyle 4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arccos (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arccos (c x))}{1-c^2 x^2}dx}{d \sqrt {d-c^2 d x^2}}+\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {a+b \arccos (c x)}{x \left (1-c^2 x^2\right )^2}dx}{d^2 \sqrt {d-c^2 d x^2}}-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 5181

\(\displaystyle 4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arccos (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \int \frac {c x (a+b \arccos (c x))}{\sqrt {1-c^2 x^2}}d\arccos (c x)}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {a+b \arccos (c x)}{x \left (1-c^2 x^2\right )^2}dx}{d^2 \sqrt {d-c^2 d x^2}}-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {a+b \arccos (c x)}{x \left (1-c^2 x^2\right )^2}dx}{d^2 \sqrt {d-c^2 d x^2}}+4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arccos (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \int -\left ((a+b \arccos (c x)) \tan \left (\arccos (c x)+\frac {\pi }{2}\right )\right )d\arccos (c x)}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {a+b \arccos (c x)}{x \left (1-c^2 x^2\right )^2}dx}{d^2 \sqrt {d-c^2 d x^2}}+4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arccos (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {2 b \sqrt {1-c^2 x^2} \int (a+b \arccos (c x)) \tan \left (\arccos (c x)+\frac {\pi }{2}\right )d\arccos (c x)}{c d \sqrt {d-c^2 d x^2}}+\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 4200

\(\displaystyle 4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arccos (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (2 i \int -\frac {e^{2 i \arccos (c x)} (a+b \arccos (c x))}{1-e^{2 i \arccos (c x)}}d\arccos (c x)-\frac {i (a+b \arccos (c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {a+b \arccos (c x)}{x \left (1-c^2 x^2\right )^2}dx}{d^2 \sqrt {d-c^2 d x^2}}-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle 4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arccos (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-2 i \int \frac {e^{2 i \arccos (c x)} (a+b \arccos (c x))}{1-e^{2 i \arccos (c x)}}d\arccos (c x)-\frac {i (a+b \arccos (c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {a+b \arccos (c x)}{x \left (1-c^2 x^2\right )^2}dx}{d^2 \sqrt {d-c^2 d x^2}}-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 2620

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {a+b \arccos (c x)}{x \left (1-c^2 x^2\right )^2}dx}{d^2 \sqrt {d-c^2 d x^2}}+4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arccos (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))-\frac {1}{2} i b \int \log \left (1-e^{2 i \arccos (c x)}\right )d\arccos (c x)\right )-\frac {i (a+b \arccos (c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 2715

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {a+b \arccos (c x)}{x \left (1-c^2 x^2\right )^2}dx}{d^2 \sqrt {d-c^2 d x^2}}+4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arccos (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))-\frac {1}{4} b \int e^{-2 i \arccos (c x)} \log \left (1-e^{2 i \arccos (c x)}\right )de^{2 i \arccos (c x)}\right )-\frac {i (a+b \arccos (c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 2838

\(\displaystyle 4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arccos (c x))}{\left (1-c^2 x^2\right )^2}dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))+\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )\right )-\frac {i (a+b \arccos (c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {a+b \arccos (c x)}{x \left (1-c^2 x^2\right )^2}dx}{d^2 \sqrt {d-c^2 d x^2}}-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 5183

\(\displaystyle 4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \left (\frac {b \int \frac {1}{\left (1-c^2 x^2\right )^{3/2}}dx}{2 c}+\frac {a+b \arccos (c x)}{2 c^2 \left (1-c^2 x^2\right )}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))+\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )\right )-\frac {i (a+b \arccos (c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {a+b \arccos (c x)}{x \left (1-c^2 x^2\right )^2}dx}{d^2 \sqrt {d-c^2 d x^2}}-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 208

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {a+b \arccos (c x)}{x \left (1-c^2 x^2\right )^2}dx}{d^2 \sqrt {d-c^2 d x^2}}+4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \left (\frac {a+b \arccos (c x)}{2 c^2 \left (1-c^2 x^2\right )}+\frac {b x}{2 c \sqrt {1-c^2 x^2}}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))+\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )\right )-\frac {i (a+b \arccos (c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 5209

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \left (\int \frac {a+b \arccos (c x)}{x \left (1-c^2 x^2\right )}dx+\frac {1}{2} b c \int \frac {1}{\left (1-c^2 x^2\right )^{3/2}}dx+\frac {a+b \arccos (c x)}{2 \left (1-c^2 x^2\right )}\right )}{d^2 \sqrt {d-c^2 d x^2}}+4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \left (\frac {a+b \arccos (c x)}{2 c^2 \left (1-c^2 x^2\right )}+\frac {b x}{2 c \sqrt {1-c^2 x^2}}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))+\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )\right )-\frac {i (a+b \arccos (c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 208

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \left (\int \frac {a+b \arccos (c x)}{x \left (1-c^2 x^2\right )}dx+\frac {a+b \arccos (c x)}{2 \left (1-c^2 x^2\right )}+\frac {b c x}{2 \sqrt {1-c^2 x^2}}\right )}{d^2 \sqrt {d-c^2 d x^2}}+4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \left (\frac {a+b \arccos (c x)}{2 c^2 \left (1-c^2 x^2\right )}+\frac {b x}{2 c \sqrt {1-c^2 x^2}}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))+\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )\right )-\frac {i (a+b \arccos (c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 5185

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \left (-\int \frac {a+b \arccos (c x)}{c x \sqrt {1-c^2 x^2}}d\arccos (c x)+\frac {a+b \arccos (c x)}{2 \left (1-c^2 x^2\right )}+\frac {b c x}{2 \sqrt {1-c^2 x^2}}\right )}{d^2 \sqrt {d-c^2 d x^2}}+4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \left (\frac {a+b \arccos (c x)}{2 c^2 \left (1-c^2 x^2\right )}+\frac {b x}{2 c \sqrt {1-c^2 x^2}}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))+\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )\right )-\frac {i (a+b \arccos (c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 4919

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \left (-2 \int (a+b \arccos (c x)) \csc (2 \arccos (c x))d\arccos (c x)+\frac {a+b \arccos (c x)}{2 \left (1-c^2 x^2\right )}+\frac {b c x}{2 \sqrt {1-c^2 x^2}}\right )}{d^2 \sqrt {d-c^2 d x^2}}+4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \left (\frac {a+b \arccos (c x)}{2 c^2 \left (1-c^2 x^2\right )}+\frac {b x}{2 c \sqrt {1-c^2 x^2}}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))+\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )\right )-\frac {i (a+b \arccos (c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \left (-2 \int (a+b \arccos (c x)) \csc (2 \arccos (c x))d\arccos (c x)+\frac {a+b \arccos (c x)}{2 \left (1-c^2 x^2\right )}+\frac {b c x}{2 \sqrt {1-c^2 x^2}}\right )}{d^2 \sqrt {d-c^2 d x^2}}+4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \left (\frac {a+b \arccos (c x)}{2 c^2 \left (1-c^2 x^2\right )}+\frac {b x}{2 c \sqrt {1-c^2 x^2}}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))+\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )\right )-\frac {i (a+b \arccos (c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 4671

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \left (-2 \left (-\frac {1}{2} b \int \log \left (1-e^{2 i \arccos (c x)}\right )d\arccos (c x)+\frac {1}{2} b \int \log \left (1+e^{2 i \arccos (c x)}\right )d\arccos (c x)-\left (\text {arctanh}\left (e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))\right )\right )+\frac {a+b \arccos (c x)}{2 \left (1-c^2 x^2\right )}+\frac {b c x}{2 \sqrt {1-c^2 x^2}}\right )}{d^2 \sqrt {d-c^2 d x^2}}+4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \left (\frac {a+b \arccos (c x)}{2 c^2 \left (1-c^2 x^2\right )}+\frac {b x}{2 c \sqrt {1-c^2 x^2}}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))+\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )\right )-\frac {i (a+b \arccos (c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 2715

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \left (-2 \left (\frac {1}{4} i b \int e^{-2 i \arccos (c x)} \log \left (1-e^{2 i \arccos (c x)}\right )de^{2 i \arccos (c x)}-\frac {1}{4} i b \int e^{-2 i \arccos (c x)} \log \left (1+e^{2 i \arccos (c x)}\right )de^{2 i \arccos (c x)}-\left (\text {arctanh}\left (e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))\right )\right )+\frac {a+b \arccos (c x)}{2 \left (1-c^2 x^2\right )}+\frac {b c x}{2 \sqrt {1-c^2 x^2}}\right )}{d^2 \sqrt {d-c^2 d x^2}}+4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \left (\frac {a+b \arccos (c x)}{2 c^2 \left (1-c^2 x^2\right )}+\frac {b x}{2 c \sqrt {1-c^2 x^2}}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))+\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )\right )-\frac {i (a+b \arccos (c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

\(\Big \downarrow \) 2838

\(\displaystyle -\frac {2 b c \sqrt {1-c^2 x^2} \left (-2 \left (-\left (\text {arctanh}\left (e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))\right )+\frac {1}{4} i b \operatorname {PolyLog}\left (2,-e^{2 i \arccos (c x)}\right )-\frac {1}{4} i b \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )\right )+\frac {a+b \arccos (c x)}{2 \left (1-c^2 x^2\right )}+\frac {b c x}{2 \sqrt {1-c^2 x^2}}\right )}{d^2 \sqrt {d-c^2 d x^2}}+4 c^2 \left (\frac {2 b c \sqrt {1-c^2 x^2} \left (\frac {a+b \arccos (c x)}{2 c^2 \left (1-c^2 x^2\right )}+\frac {b x}{2 c \sqrt {1-c^2 x^2}}\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \left (\frac {x (a+b \arccos (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-2 i \left (\frac {1}{2} i \log \left (1-e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))+\frac {1}{4} b \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )\right )-\frac {i (a+b \arccos (c x))^2}{2 b}\right )}{c d \sqrt {d-c^2 d x^2}}\right )}{3 d}+\frac {x (a+b \arccos (c x))^2}{3 d \left (d-c^2 d x^2\right )^{3/2}}\right )-\frac {(a+b \arccos (c x))^2}{d x \left (d-c^2 d x^2\right )^{3/2}}\)

Input:

Int[(a + b*ArcCos[c*x])^2/(x^2*(d - c^2*d*x^2)^(5/2)),x]
 

Output:

-((a + b*ArcCos[c*x])^2/(d*x*(d - c^2*d*x^2)^(3/2))) - (2*b*c*Sqrt[1 - c^2 
*x^2]*((b*c*x)/(2*Sqrt[1 - c^2*x^2]) + (a + b*ArcCos[c*x])/(2*(1 - c^2*x^2 
)) - 2*(-((a + b*ArcCos[c*x])*ArcTanh[E^((2*I)*ArcCos[c*x])]) + (I/4)*b*Po 
lyLog[2, -E^((2*I)*ArcCos[c*x])] - (I/4)*b*PolyLog[2, E^((2*I)*ArcCos[c*x] 
)])))/(d^2*Sqrt[d - c^2*d*x^2]) + 4*c^2*((x*(a + b*ArcCos[c*x])^2)/(3*d*(d 
 - c^2*d*x^2)^(3/2)) + (2*b*c*Sqrt[1 - c^2*x^2]*((b*x)/(2*c*Sqrt[1 - c^2*x 
^2]) + (a + b*ArcCos[c*x])/(2*c^2*(1 - c^2*x^2))))/(3*d^2*Sqrt[d - c^2*d*x 
^2]) + (2*((x*(a + b*ArcCos[c*x])^2)/(d*Sqrt[d - c^2*d*x^2]) - (2*b*Sqrt[1 
 - c^2*x^2]*(((-1/2*I)*(a + b*ArcCos[c*x])^2)/b - (2*I)*((I/2)*(a + b*ArcC 
os[c*x])*Log[1 - E^((2*I)*ArcCos[c*x])] + (b*PolyLog[2, E^((2*I)*ArcCos[c* 
x])])/4)))/(c*d*Sqrt[d - c^2*d*x^2])))/(3*d))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 208
Int[((a_) + (b_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[x/(a*Sqrt[a + b*x^2]), 
x] /; FreeQ[{a, b}, x]
 

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4200
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol 
] :> Simp[I*((c + d*x)^(m + 1)/(d*(m + 1))), x] - Simp[2*I   Int[(c + d*x)^ 
m*E^(2*I*k*Pi)*(E^(2*I*(e + f*x))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x)))), x] 
, x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]
 

rule 4671
Int[csc[(e_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[- 
2*(c + d*x)^m*(ArcTanh[E^(I*(e + f*x))]/f), x] + (-Simp[d*(m/f)   Int[(c + 
d*x)^(m - 1)*Log[1 - E^(I*(e + f*x))], x], x] + Simp[d*(m/f)   Int[(c + d*x 
)^(m - 1)*Log[1 + E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e, f}, x] && IG 
tQ[m, 0]
 

rule 4919
Int[Csc[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.)*Sec[(a_.) + (b 
_.)*(x_)]^(n_.), x_Symbol] :> Simp[2^n   Int[(c + d*x)^m*Csc[2*a + 2*b*x]^n 
, x], x] /; FreeQ[{a, b, c, d, m}, x] && IntegerQ[n] && RationalQ[m]
 

rule 5161
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2)^(3/2), x 
_Symbol] :> Simp[x*((a + b*ArcCos[c*x])^n/(d*Sqrt[d + e*x^2])), x] + Simp[b 
*c*(n/d)*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]   Int[x*((a + b*ArcCos[c*x 
])^(n - 1)/(1 - c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d 
 + e, 0] && GtQ[n, 0]
 

rule 5163
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x_ 
Symbol] :> Simp[(-x)*(d + e*x^2)^(p + 1)*((a + b*ArcCos[c*x])^n/(2*d*(p + 1 
))), x] + (Simp[(2*p + 3)/(2*d*(p + 1))   Int[(d + e*x^2)^(p + 1)*(a + b*Ar 
cCos[c*x])^n, x], x] - Simp[b*c*(n/(2*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2 
*x^2)^p]   Int[x*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x 
]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, 
 -1] && NeQ[p, -3/2]
 

rule 5181
Int[(((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), 
x_Symbol] :> Simp[1/e   Subst[Int[(a + b*x)^n*Cot[x], x], x, ArcCos[c*x]], 
x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]
 

rule 5183
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_ 
.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1)*((a + b*ArcCos[c*x])^n/(2*e*(p + 
1))), x] - Simp[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   I 
nt[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x] /; FreeQ[{a, 
 b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]
 

rule 5185
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)/((x_)*((d_) + (e_.)*(x_)^2)), 
x_Symbol] :> Simp[-d^(-1)   Subst[Int[(a + b*x)^n/(Cos[x]*Sin[x]), x], x, A 
rcCos[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n 
, 0]
 

rule 5205
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b 
*ArcCos[c*x])^n/(d*f*(m + 1))), x] + (Simp[c^2*((m + 2*p + 3)/(f^2*(m + 1)) 
)   Int[(f*x)^(m + 2)*(d + e*x^2)^p*(a + b*ArcCos[c*x])^n, x], x] + Simp[b* 
c*(n/(f*(m + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f*x)^(m + 1)*( 
1 - c^2*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, 
 c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && ILtQ[m, -1]
 

rule 5209
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(f*x)^(m + 1))*(d + e*x^2)^(p + 1)*((a 
+ b*ArcCos[c*x])^n/(2*d*f*(p + 1))), x] + (Simp[(m + 2*p + 3)/(2*d*(p + 1)) 
   Int[(f*x)^m*(d + e*x^2)^(p + 1)*(a + b*ArcCos[c*x])^n, x], x] - Simp[b*c 
*(n/(2*f*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f*x)^(m + 1)* 
(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x]) /; FreeQ[{a, b 
, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] &&  !G 
tQ[m, 1] && (IntegerQ[m] || IntegerQ[p] || EqQ[n, 1])
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 3778 vs. \(2 (447 ) = 894\).

Time = 0.76 (sec) , antiderivative size = 3779, normalized size of antiderivative = 8.36

method result size
default \(\text {Expression too large to display}\) \(3779\)
parts \(\text {Expression too large to display}\) \(3779\)

Input:

int((a+b*arccos(c*x))^2/x^2/(-c^2*d*x^2+d)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-272/3*I*a*b*(-d*(c^2*x^2-1))^(1/2)/(8*c^6*x^6-25*c^4*x^4+26*c^2*x^2-9)/d^ 
3*x^2*arccos(c*x)*(-c^2*x^2+1)^(1/2)*c^3+128/3*I*a*b*(-d*(c^2*x^2-1))^(1/2 
)/(8*c^6*x^6-25*c^4*x^4+26*c^2*x^2-9)/d^3*x^4*arccos(c*x)*(-c^2*x^2+1)^(1/ 
2)*c^5-8*b^2*(-d*(c^2*x^2-1))^(1/2)/(8*c^6*x^6-25*c^4*x^4+26*c^2*x^2-9)/d^ 
3*x*(-c^2*x^2+1)*c^2+32/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(8*c^6*x^6-25*c^4*x^4 
+26*c^2*x^2-9)/d^3*x^7*(-c^2*x^2+1)*c^8-88/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(8 
*c^6*x^6-25*c^4*x^4+26*c^2*x^2-9)/d^3*x^5*(-c^2*x^2+1)*c^6-44*b^2*(-d*(c^2 
*x^2-1))^(1/2)/(8*c^6*x^6-25*c^4*x^4+26*c^2*x^2-9)/d^3*x*arccos(c*x)^2*c^2 
-64/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(8*c^6*x^6-25*c^4*x^4+26*c^2*x^2-9)/d^3*x 
^5*arccos(c*x)^2*c^6+56*b^2*(-d*(c^2*x^2-1))^(1/2)/(8*c^6*x^6-25*c^4*x^4+2 
6*c^2*x^2-9)/d^3*x^3*arccos(c*x)^2*c^4-3*b^2*(-d*(c^2*x^2-1))^(1/2)/(8*c^6 
*x^6-25*c^4*x^4+26*c^2*x^2-9)/d^3*arccos(c*x)*(-c^2*x^2+1)^(1/2)*c+3*I*b^2 
*(-d*(c^2*x^2-1))^(1/2)/(8*c^6*x^6-25*c^4*x^4+26*c^2*x^2-9)/d^3*(-c^2*x^2+ 
1)^(1/2)*c+80/3*b^2*(-d*(c^2*x^2-1))^(1/2)/(8*c^6*x^6-25*c^4*x^4+26*c^2*x^ 
2-9)/d^3*x^3*(-c^2*x^2+1)*c^4+112*a*b*(-d*(c^2*x^2-1))^(1/2)/(8*c^6*x^6-25 
*c^4*x^4+26*c^2*x^2-9)/d^3*x^3*arccos(c*x)*c^4-128/3*a*b*(-d*(c^2*x^2-1))^ 
(1/2)/(8*c^6*x^6-25*c^4*x^4+26*c^2*x^2-9)/d^3*x^5*arccos(c*x)*c^6-88*a*b*( 
-d*(c^2*x^2-1))^(1/2)/(8*c^6*x^6-25*c^4*x^4+26*c^2*x^2-9)/d^3*x*arccos(c*x 
)*c^2+8/3*a*b*(-d*(c^2*x^2-1))^(1/2)/(8*c^6*x^6-25*c^4*x^4+26*c^2*x^2-9)/d 
^3*x^2*(-c^2*x^2+1)^(1/2)*c^3+10/3*a*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2...
 

Fricas [F]

\[ \int \frac {(a+b \arccos (c x))^2}{x^2 \left (d-c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \arccos \left (c x\right ) + a\right )}^{2}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}} x^{2}} \,d x } \] Input:

integrate((a+b*arccos(c*x))^2/x^2/(-c^2*d*x^2+d)^(5/2),x, algorithm="frica 
s")
 

Output:

integral(-sqrt(-c^2*d*x^2 + d)*(b^2*arccos(c*x)^2 + 2*a*b*arccos(c*x) + a^ 
2)/(c^6*d^3*x^8 - 3*c^4*d^3*x^6 + 3*c^2*d^3*x^4 - d^3*x^2), x)
 

Sympy [F]

\[ \int \frac {(a+b \arccos (c x))^2}{x^2 \left (d-c^2 d x^2\right )^{5/2}} \, dx=\int \frac {\left (a + b \operatorname {acos}{\left (c x \right )}\right )^{2}}{x^{2} \left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {5}{2}}}\, dx \] Input:

integrate((a+b*acos(c*x))**2/x**2/(-c**2*d*x**2+d)**(5/2),x)
 

Output:

Integral((a + b*acos(c*x))**2/(x**2*(-d*(c*x - 1)*(c*x + 1))**(5/2)), x)
 

Maxima [F]

\[ \int \frac {(a+b \arccos (c x))^2}{x^2 \left (d-c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \arccos \left (c x\right ) + a\right )}^{2}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}} x^{2}} \,d x } \] Input:

integrate((a+b*arccos(c*x))^2/x^2/(-c^2*d*x^2+d)^(5/2),x, algorithm="maxim 
a")
 

Output:

1/3*a^2*(8*c^2*x/(sqrt(-c^2*d*x^2 + d)*d^2) + 4*c^2*x/((-c^2*d*x^2 + d)^(3 
/2)*d) - 3/((-c^2*d*x^2 + d)^(3/2)*d*x)) - sqrt(d)*integrate((b^2*arctan2( 
sqrt(c*x + 1)*sqrt(-c*x + 1), c*x)^2 + 2*a*b*arctan2(sqrt(c*x + 1)*sqrt(-c 
*x + 1), c*x))*sqrt(c*x + 1)*sqrt(-c*x + 1)/(c^6*d^3*x^8 - 3*c^4*d^3*x^6 + 
 3*c^2*d^3*x^4 - d^3*x^2), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+b \arccos (c x))^2}{x^2 \left (d-c^2 d x^2\right )^{5/2}} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate((a+b*arccos(c*x))^2/x^2/(-c^2*d*x^2+d)^(5/2),x, algorithm="giac" 
)
 

Output:

Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \arccos (c x))^2}{x^2 \left (d-c^2 d x^2\right )^{5/2}} \, dx=\int \frac {{\left (a+b\,\mathrm {acos}\left (c\,x\right )\right )}^2}{x^2\,{\left (d-c^2\,d\,x^2\right )}^{5/2}} \,d x \] Input:

int((a + b*acos(c*x))^2/(x^2*(d - c^2*d*x^2)^(5/2)),x)
 

Output:

int((a + b*acos(c*x))^2/(x^2*(d - c^2*d*x^2)^(5/2)), x)
 

Reduce [F]

\[ \int \frac {(a+b \arccos (c x))^2}{x^2 \left (d-c^2 d x^2\right )^{5/2}} \, dx=\frac {6 \sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {acos} \left (c x \right )}{\sqrt {-c^{2} x^{2}+1}\, c^{4} x^{6}-2 \sqrt {-c^{2} x^{2}+1}\, c^{2} x^{4}+\sqrt {-c^{2} x^{2}+1}\, x^{2}}d x \right ) a b \,c^{2} x^{3}-6 \sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {acos} \left (c x \right )}{\sqrt {-c^{2} x^{2}+1}\, c^{4} x^{6}-2 \sqrt {-c^{2} x^{2}+1}\, c^{2} x^{4}+\sqrt {-c^{2} x^{2}+1}\, x^{2}}d x \right ) a b x +3 \sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {acos} \left (c x \right )^{2}}{\sqrt {-c^{2} x^{2}+1}\, c^{4} x^{6}-2 \sqrt {-c^{2} x^{2}+1}\, c^{2} x^{4}+\sqrt {-c^{2} x^{2}+1}\, x^{2}}d x \right ) b^{2} c^{2} x^{3}-3 \sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {acos} \left (c x \right )^{2}}{\sqrt {-c^{2} x^{2}+1}\, c^{4} x^{6}-2 \sqrt {-c^{2} x^{2}+1}\, c^{2} x^{4}+\sqrt {-c^{2} x^{2}+1}\, x^{2}}d x \right ) b^{2} x +8 a^{2} c^{4} x^{4}-12 a^{2} c^{2} x^{2}+3 a^{2}}{3 \sqrt {d}\, \sqrt {-c^{2} x^{2}+1}\, d^{2} x \left (c^{2} x^{2}-1\right )} \] Input:

int((a+b*acos(c*x))^2/x^2/(-c^2*d*x^2+d)^(5/2),x)
 

Output:

(6*sqrt( - c**2*x**2 + 1)*int(acos(c*x)/(sqrt( - c**2*x**2 + 1)*c**4*x**6 
- 2*sqrt( - c**2*x**2 + 1)*c**2*x**4 + sqrt( - c**2*x**2 + 1)*x**2),x)*a*b 
*c**2*x**3 - 6*sqrt( - c**2*x**2 + 1)*int(acos(c*x)/(sqrt( - c**2*x**2 + 1 
)*c**4*x**6 - 2*sqrt( - c**2*x**2 + 1)*c**2*x**4 + sqrt( - c**2*x**2 + 1)* 
x**2),x)*a*b*x + 3*sqrt( - c**2*x**2 + 1)*int(acos(c*x)**2/(sqrt( - c**2*x 
**2 + 1)*c**4*x**6 - 2*sqrt( - c**2*x**2 + 1)*c**2*x**4 + sqrt( - c**2*x** 
2 + 1)*x**2),x)*b**2*c**2*x**3 - 3*sqrt( - c**2*x**2 + 1)*int(acos(c*x)**2 
/(sqrt( - c**2*x**2 + 1)*c**4*x**6 - 2*sqrt( - c**2*x**2 + 1)*c**2*x**4 + 
sqrt( - c**2*x**2 + 1)*x**2),x)*b**2*x + 8*a**2*c**4*x**4 - 12*a**2*c**2*x 
**2 + 3*a**2)/(3*sqrt(d)*sqrt( - c**2*x**2 + 1)*d**2*x*(c**2*x**2 - 1))