\(\int \frac {1}{\sqrt {a+b x^2} \arctan (\frac {e x}{\sqrt {-\frac {a e^2}{b}-e^2 x^2}})} \, dx\) [143]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 40, antiderivative size = 64 \[ \int \frac {1}{\sqrt {a+b x^2} \arctan \left (\frac {e x}{\sqrt {-\frac {a e^2}{b}-e^2 x^2}}\right )} \, dx=\frac {\sqrt {-\frac {a e^2}{b}-e^2 x^2} \log \left (\arctan \left (\frac {e x}{\sqrt {-\frac {a e^2}{b}-e^2 x^2}}\right )\right )}{e \sqrt {a+b x^2}} \] Output:

(-a*e^2/b-e^2*x^2)^(1/2)*ln(arctan(e*x/(-a*e^2/b-e^2*x^2)^(1/2)))/e/(b*x^2 
+a)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.91 \[ \int \frac {1}{\sqrt {a+b x^2} \arctan \left (\frac {e x}{\sqrt {-\frac {a e^2}{b}-e^2 x^2}}\right )} \, dx=\frac {\sqrt {-\frac {e^2 \left (a+b x^2\right )}{b}} \log \left (\arctan \left (\frac {e x}{\sqrt {-\frac {e^2 \left (a+b x^2\right )}{b}}}\right )\right )}{e \sqrt {a+b x^2}} \] Input:

Integrate[1/(Sqrt[a + b*x^2]*ArcTan[(e*x)/Sqrt[-((a*e^2)/b) - e^2*x^2]]),x 
]
 

Output:

(Sqrt[-((e^2*(a + b*x^2))/b)]*Log[ArcTan[(e*x)/Sqrt[-((e^2*(a + b*x^2))/b) 
]]])/(e*Sqrt[a + b*x^2])
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {5680, 5676}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {a+b x^2} \arctan \left (\frac {e x}{\sqrt {e^2 \left (-x^2\right )-\frac {a e^2}{b}}}\right )} \, dx\)

\(\Big \downarrow \) 5680

\(\displaystyle \frac {\sqrt {e^2 \left (-x^2\right )-\frac {a e^2}{b}} \int \frac {1}{\sqrt {-x^2 e^2-\frac {a e^2}{b}} \arctan \left (\frac {e x}{\sqrt {-x^2 e^2-\frac {a e^2}{b}}}\right )}dx}{\sqrt {a+b x^2}}\)

\(\Big \downarrow \) 5676

\(\displaystyle \frac {\sqrt {e^2 \left (-x^2\right )-\frac {a e^2}{b}} \log \left (\arctan \left (\frac {e x}{\sqrt {e^2 \left (-x^2\right )-\frac {a e^2}{b}}}\right )\right )}{e \sqrt {a+b x^2}}\)

Input:

Int[1/(Sqrt[a + b*x^2]*ArcTan[(e*x)/Sqrt[-((a*e^2)/b) - e^2*x^2]]),x]
 

Output:

(Sqrt[-((a*e^2)/b) - e^2*x^2]*Log[ArcTan[(e*x)/Sqrt[-((a*e^2)/b) - e^2*x^2 
]]])/(e*Sqrt[a + b*x^2])
 

Defintions of rubi rules used

rule 5676
Int[1/(ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*Sqrt[(a_.) + (b_.)*( 
x_)^2]), x_Symbol] :> Simp[(1/c)*Log[ArcTan[c*(x/Sqrt[a + b*x^2])]], x] /; 
FreeQ[{a, b, c}, x] && EqQ[b + c^2, 0]
 

rule 5680
Int[ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]^(m_.)/Sqrt[(d_.) + (e_. 
)*(x_)^2], x_Symbol] :> Simp[Sqrt[a + b*x^2]/Sqrt[d + e*x^2]   Int[ArcTan[c 
*(x/Sqrt[a + b*x^2])]^m/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c, d, e, m} 
, x] && EqQ[b + c^2, 0] && EqQ[b*d - a*e, 0]
 
Maple [F]

\[\int \frac {1}{\sqrt {b \,x^{2}+a}\, \arctan \left (\frac {e x}{\sqrt {-\frac {a \,e^{2}}{b}-e^{2} x^{2}}}\right )}d x\]

Input:

int(1/(b*x^2+a)^(1/2)/arctan(e*x/(-a*e^2/b-e^2*x^2)^(1/2)),x)
 

Output:

int(1/(b*x^2+a)^(1/2)/arctan(e*x/(-a*e^2/b-e^2*x^2)^(1/2)),x)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.30 \[ \int \frac {1}{\sqrt {a+b x^2} \arctan \left (\frac {e x}{\sqrt {-\frac {a e^2}{b}-e^2 x^2}}\right )} \, dx=\frac {\sqrt {b x^{2} + a} \sqrt {-\frac {b e^{2} x^{2} + a e^{2}}{b}} \log \left (2 \, \arctan \left (\frac {b x \sqrt {-\frac {b e^{2} x^{2} + a e^{2}}{b}}}{b e x^{2} + a e}\right )\right )}{b e x^{2} + a e} \] Input:

integrate(1/(b*x^2+a)^(1/2)/arctan(e*x/(-a*e^2/b-e^2*x^2)^(1/2)),x, algori 
thm="fricas")
 

Output:

sqrt(b*x^2 + a)*sqrt(-(b*e^2*x^2 + a*e^2)/b)*log(2*arctan(b*x*sqrt(-(b*e^2 
*x^2 + a*e^2)/b)/(b*e*x^2 + a*e)))/(b*e*x^2 + a*e)
 

Sympy [F]

\[ \int \frac {1}{\sqrt {a+b x^2} \arctan \left (\frac {e x}{\sqrt {-\frac {a e^2}{b}-e^2 x^2}}\right )} \, dx=\int \frac {1}{\sqrt {a + b x^{2}} \operatorname {atan}{\left (\frac {e x}{\sqrt {- \frac {a e^{2}}{b} - e^{2} x^{2}}} \right )}}\, dx \] Input:

integrate(1/(b*x**2+a)**(1/2)/atan(e*x/(-a*e**2/b-e**2*x**2)**(1/2)),x)
 

Output:

Integral(1/(sqrt(a + b*x**2)*atan(e*x/sqrt(-a*e**2/b - e**2*x**2))), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {a+b x^2} \arctan \left (\frac {e x}{\sqrt {-\frac {a e^2}{b}-e^2 x^2}}\right )} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(1/(b*x^2+a)^(1/2)/arctan(e*x/(-a*e^2/b-e^2*x^2)^(1/2)),x, algori 
thm="maxima")
 

Output:

Exception raised: RuntimeError >> ECL says: sign: argument cannot be imagi 
nary; found  sqrt((-_SAGE_VAR_b*_SAGE_VAR_x^2)-_SAGE_VAR_a)
 

Giac [F]

\[ \int \frac {1}{\sqrt {a+b x^2} \arctan \left (\frac {e x}{\sqrt {-\frac {a e^2}{b}-e^2 x^2}}\right )} \, dx=\int { \frac {1}{\sqrt {b x^{2} + a} \arctan \left (\frac {e x}{\sqrt {-e^{2} x^{2} - \frac {a e^{2}}{b}}}\right )} \,d x } \] Input:

integrate(1/(b*x^2+a)^(1/2)/arctan(e*x/(-a*e^2/b-e^2*x^2)^(1/2)),x, algori 
thm="giac")
 

Output:

integrate(1/(sqrt(b*x^2 + a)*arctan(e*x/sqrt(-e^2*x^2 - a*e^2/b))), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+b x^2} \arctan \left (\frac {e x}{\sqrt {-\frac {a e^2}{b}-e^2 x^2}}\right )} \, dx=\int \frac {1}{\mathrm {atan}\left (\frac {e\,x}{\sqrt {-e^2\,x^2-\frac {a\,e^2}{b}}}\right )\,\sqrt {b\,x^2+a}} \,d x \] Input:

int(1/(atan((e*x)/(- e^2*x^2 - (a*e^2)/b)^(1/2))*(a + b*x^2)^(1/2)),x)
 

Output:

int(1/(atan((e*x)/(- e^2*x^2 - (a*e^2)/b)^(1/2))*(a + b*x^2)^(1/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.83 \[ \int \frac {1}{\sqrt {a+b x^2} \arctan \left (\frac {e x}{\sqrt {-\frac {a e^2}{b}-e^2 x^2}}\right )} \, dx=\frac {\sqrt {b}\, \mathrm {log}\left (-\mathit {atan} \left (\frac {\sqrt {b}\, \sqrt {b \,x^{2}+a}\, i x +b i \,x^{2}}{\sqrt {b}\, \sqrt {b \,x^{2}+a}\, x +a +b \,x^{2}}\right )\right ) i}{b} \] Input:

int(1/(b*x^2+a)^(1/2)/atan(e*x/(-a*e^2/b-e^2*x^2)^(1/2)),x)
 

Output:

(sqrt(b)*log( - atan((sqrt(b)*sqrt(a + b*x**2)*i*x + b*i*x**2)/(sqrt(b)*sq 
rt(a + b*x**2)*x + a + b*x**2)))*i)/b