\(\int \frac {a+b \arctan (c x^3)}{d+e x} \, dx\) [30]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 739 \[ \int \frac {a+b \arctan \left (c x^3\right )}{d+e x} \, dx=\frac {\left (a+b \arctan \left (c x^3\right )\right ) \log (d+e x)}{e}+\frac {b c \log \left (\frac {e \left (1-\sqrt [6]{-c^2} x\right )}{\sqrt [6]{-c^2} d+e}\right ) \log (d+e x)}{2 \sqrt {-c^2} e}-\frac {b c \log \left (-\frac {e \left (1+\sqrt [6]{-c^2} x\right )}{\sqrt [6]{-c^2} d-e}\right ) \log (d+e x)}{2 \sqrt {-c^2} e}+\frac {b c \log \left (-\frac {e \left (\sqrt [3]{-1}+\sqrt [6]{-c^2} x\right )}{\sqrt [6]{-c^2} d-\sqrt [3]{-1} e}\right ) \log (d+e x)}{2 \sqrt {-c^2} e}-\frac {b c \log \left (-\frac {e \left ((-1)^{2/3}+\sqrt [6]{-c^2} x\right )}{\sqrt [6]{-c^2} d-(-1)^{2/3} e}\right ) \log (d+e x)}{2 \sqrt {-c^2} e}+\frac {b c \log \left (\frac {(-1)^{2/3} e \left (1+\sqrt [3]{-1} \sqrt [6]{-c^2} x\right )}{\sqrt [6]{-c^2} d+(-1)^{2/3} e}\right ) \log (d+e x)}{2 \sqrt {-c^2} e}-\frac {b c \log \left (\frac {\sqrt [3]{-1} e \left (1+(-1)^{2/3} \sqrt [6]{-c^2} x\right )}{\sqrt [6]{-c^2} d+\sqrt [3]{-1} e}\right ) \log (d+e x)}{2 \sqrt {-c^2} e}-\frac {b c \operatorname {PolyLog}\left (2,\frac {\sqrt [6]{-c^2} (d+e x)}{\sqrt [6]{-c^2} d-e}\right )}{2 \sqrt {-c^2} e}+\frac {b c \operatorname {PolyLog}\left (2,\frac {\sqrt [6]{-c^2} (d+e x)}{\sqrt [6]{-c^2} d+e}\right )}{2 \sqrt {-c^2} e}+\frac {b c \operatorname {PolyLog}\left (2,\frac {\sqrt [6]{-c^2} (d+e x)}{\sqrt [6]{-c^2} d-\sqrt [3]{-1} e}\right )}{2 \sqrt {-c^2} e}-\frac {b c \operatorname {PolyLog}\left (2,\frac {\sqrt [6]{-c^2} (d+e x)}{\sqrt [6]{-c^2} d+\sqrt [3]{-1} e}\right )}{2 \sqrt {-c^2} e}-\frac {b c \operatorname {PolyLog}\left (2,\frac {\sqrt [6]{-c^2} (d+e x)}{\sqrt [6]{-c^2} d-(-1)^{2/3} e}\right )}{2 \sqrt {-c^2} e}+\frac {b c \operatorname {PolyLog}\left (2,\frac {\sqrt [6]{-c^2} (d+e x)}{\sqrt [6]{-c^2} d+(-1)^{2/3} e}\right )}{2 \sqrt {-c^2} e} \] Output:

(a+b*arctan(c*x^3))*ln(e*x+d)/e+1/2*b*c*ln(e*(1-(-c^2)^(1/6)*x)/((-c^2)^(1 
/6)*d+e))*ln(e*x+d)/(-c^2)^(1/2)/e-1/2*b*c*ln(-e*(1+(-c^2)^(1/6)*x)/((-c^2 
)^(1/6)*d-e))*ln(e*x+d)/(-c^2)^(1/2)/e+1/2*b*c*ln(-e*((-1)^(1/3)+(-c^2)^(1 
/6)*x)/((-c^2)^(1/6)*d-(-1)^(1/3)*e))*ln(e*x+d)/(-c^2)^(1/2)/e-1/2*b*c*ln( 
-e*((-1)^(2/3)+(-c^2)^(1/6)*x)/((-c^2)^(1/6)*d-(-1)^(2/3)*e))*ln(e*x+d)/(- 
c^2)^(1/2)/e+1/2*b*c*ln((-1)^(2/3)*e*(1+(-1)^(1/3)*(-c^2)^(1/6)*x)/((-c^2) 
^(1/6)*d+(-1)^(2/3)*e))*ln(e*x+d)/(-c^2)^(1/2)/e-1/2*b*c*ln((-1)^(1/3)*e*( 
1+(-1)^(2/3)*(-c^2)^(1/6)*x)/((-c^2)^(1/6)*d+(-1)^(1/3)*e))*ln(e*x+d)/(-c^ 
2)^(1/2)/e-1/2*b*c*polylog(2,(-c^2)^(1/6)*(e*x+d)/((-c^2)^(1/6)*d-e))/(-c^ 
2)^(1/2)/e+1/2*b*c*polylog(2,(-c^2)^(1/6)*(e*x+d)/((-c^2)^(1/6)*d+e))/(-c^ 
2)^(1/2)/e+1/2*b*c*polylog(2,(-c^2)^(1/6)*(e*x+d)/((-c^2)^(1/6)*d-(-1)^(1/ 
3)*e))/(-c^2)^(1/2)/e-1/2*b*c*polylog(2,(-c^2)^(1/6)*(e*x+d)/((-c^2)^(1/6) 
*d+(-1)^(1/3)*e))/(-c^2)^(1/2)/e-1/2*b*c*polylog(2,(-c^2)^(1/6)*(e*x+d)/(( 
-c^2)^(1/6)*d-(-1)^(2/3)*e))/(-c^2)^(1/2)/e+1/2*b*c*polylog(2,(-c^2)^(1/6) 
*(e*x+d)/((-c^2)^(1/6)*d+(-1)^(2/3)*e))/(-c^2)^(1/2)/e
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 9.90 (sec) , antiderivative size = 522, normalized size of antiderivative = 0.71 \[ \int \frac {a+b \arctan \left (c x^3\right )}{d+e x} \, dx=\frac {a \log (d+e x)}{e}+\frac {b \left (2 \arctan \left (c x^3\right ) \log (d+e x)-i \left (\log \left (\frac {e \left (-i+\sqrt {3}-2 \sqrt [3]{c} x\right )}{2 \sqrt [3]{c} d+\left (-i+\sqrt {3}\right ) e}\right ) \log (d+e x)-\log \left (\frac {e \left (i+\sqrt {3}-2 \sqrt [3]{c} x\right )}{2 \sqrt [3]{c} d+\left (i+\sqrt {3}\right ) e}\right ) \log (d+e x)+\log \left (\frac {e \left (i-\sqrt [3]{c} x\right )}{\sqrt [3]{c} d+i e}\right ) \log (d+e x)-\log \left (-\frac {e \left (i+\sqrt [3]{c} x\right )}{\sqrt [3]{c} d-i e}\right ) \log (d+e x)-\log \left (\frac {e \left (-i+\sqrt {3}+2 \sqrt [3]{c} x\right )}{-2 \sqrt [3]{c} d+\left (-i+\sqrt {3}\right ) e}\right ) \log (d+e x)+\log \left (\frac {e \left (i+\sqrt {3}+2 \sqrt [3]{c} x\right )}{-2 \sqrt [3]{c} d+\left (i+\sqrt {3}\right ) e}\right ) \log (d+e x)-\operatorname {PolyLog}\left (2,\frac {\sqrt [3]{c} (d+e x)}{\sqrt [3]{c} d-i e}\right )+\operatorname {PolyLog}\left (2,\frac {\sqrt [3]{c} (d+e x)}{\sqrt [3]{c} d+i e}\right )-\operatorname {PolyLog}\left (2,\frac {2 \sqrt [3]{c} (d+e x)}{2 \sqrt [3]{c} d+i e-\sqrt {3} e}\right )+\operatorname {PolyLog}\left (2,\frac {2 \sqrt [3]{c} (d+e x)}{2 \sqrt [3]{c} d+\left (-i+\sqrt {3}\right ) e}\right )+\operatorname {PolyLog}\left (2,\frac {2 \sqrt [3]{c} (d+e x)}{2 \sqrt [3]{c} d-\left (i+\sqrt {3}\right ) e}\right )-\operatorname {PolyLog}\left (2,\frac {2 \sqrt [3]{c} (d+e x)}{2 \sqrt [3]{c} d+\left (i+\sqrt {3}\right ) e}\right )\right )\right )}{2 e} \] Input:

Integrate[(a + b*ArcTan[c*x^3])/(d + e*x),x]
 

Output:

(a*Log[d + e*x])/e + (b*(2*ArcTan[c*x^3]*Log[d + e*x] - I*(Log[(e*(-I + Sq 
rt[3] - 2*c^(1/3)*x))/(2*c^(1/3)*d + (-I + Sqrt[3])*e)]*Log[d + e*x] - Log 
[(e*(I + Sqrt[3] - 2*c^(1/3)*x))/(2*c^(1/3)*d + (I + Sqrt[3])*e)]*Log[d + 
e*x] + Log[(e*(I - c^(1/3)*x))/(c^(1/3)*d + I*e)]*Log[d + e*x] - Log[-((e* 
(I + c^(1/3)*x))/(c^(1/3)*d - I*e))]*Log[d + e*x] - Log[(e*(-I + Sqrt[3] + 
 2*c^(1/3)*x))/(-2*c^(1/3)*d + (-I + Sqrt[3])*e)]*Log[d + e*x] + Log[(e*(I 
 + Sqrt[3] + 2*c^(1/3)*x))/(-2*c^(1/3)*d + (I + Sqrt[3])*e)]*Log[d + e*x] 
- PolyLog[2, (c^(1/3)*(d + e*x))/(c^(1/3)*d - I*e)] + PolyLog[2, (c^(1/3)* 
(d + e*x))/(c^(1/3)*d + I*e)] - PolyLog[2, (2*c^(1/3)*(d + e*x))/(2*c^(1/3 
)*d + I*e - Sqrt[3]*e)] + PolyLog[2, (2*c^(1/3)*(d + e*x))/(2*c^(1/3)*d + 
(-I + Sqrt[3])*e)] + PolyLog[2, (2*c^(1/3)*(d + e*x))/(2*c^(1/3)*d - (I + 
Sqrt[3])*e)] - PolyLog[2, (2*c^(1/3)*(d + e*x))/(2*c^(1/3)*d + (I + Sqrt[3 
])*e)])))/(2*e)
 

Rubi [A] (verified)

Time = 1.49 (sec) , antiderivative size = 687, normalized size of antiderivative = 0.93, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {5391, 2863, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \arctan \left (c x^3\right )}{d+e x} \, dx\)

\(\Big \downarrow \) 5391

\(\displaystyle \frac {\log (d+e x) \left (a+b \arctan \left (c x^3\right )\right )}{e}-\frac {3 b c \int \frac {x^2 \log (d+e x)}{c^2 x^6+1}dx}{e}\)

\(\Big \downarrow \) 2863

\(\displaystyle \frac {\log (d+e x) \left (a+b \arctan \left (c x^3\right )\right )}{e}-\frac {3 b c \int \left (-\frac {c^2 \log (d+e x) x^2}{2 \sqrt {-c^2} \left (\sqrt {-c^2}-c^2 x^3\right )}-\frac {c^2 \log (d+e x) x^2}{2 \sqrt {-c^2} \left (c^2 x^3+\sqrt {-c^2}\right )}\right )dx}{e}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\log (d+e x) \left (a+b \arctan \left (c x^3\right )\right )}{e}-\frac {3 b c \left (\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [6]{-c^2} (d+e x)}{\sqrt [6]{-c^2} d-e}\right )}{6 \sqrt {-c^2}}-\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [6]{-c^2} (d+e x)}{\sqrt [6]{-c^2} d+e}\right )}{6 \sqrt {-c^2}}-\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [6]{-c^2} (d+e x)}{\sqrt [6]{-c^2} d-\sqrt [3]{-1} e}\right )}{6 \sqrt {-c^2}}+\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [6]{-c^2} (d+e x)}{\sqrt [6]{-c^2} d+\sqrt [3]{-1} e}\right )}{6 \sqrt {-c^2}}+\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [6]{-c^2} (d+e x)}{\sqrt [6]{-c^2} d-(-1)^{2/3} e}\right )}{6 \sqrt {-c^2}}-\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [6]{-c^2} (d+e x)}{\sqrt [6]{-c^2} d+(-1)^{2/3} e}\right )}{6 \sqrt {-c^2}}-\frac {\log (d+e x) \log \left (\frac {e \left (1-\sqrt [6]{-c^2} x\right )}{\sqrt [6]{-c^2} d+e}\right )}{6 \sqrt {-c^2}}+\frac {\log (d+e x) \log \left (-\frac {e \left (\sqrt [6]{-c^2} x+1\right )}{\sqrt [6]{-c^2} d-e}\right )}{6 \sqrt {-c^2}}-\frac {\log (d+e x) \log \left (-\frac {e \left (\sqrt [6]{-c^2} x+\sqrt [3]{-1}\right )}{\sqrt [6]{-c^2} d-\sqrt [3]{-1} e}\right )}{6 \sqrt {-c^2}}+\frac {\log (d+e x) \log \left (-\frac {e \left (\sqrt [6]{-c^2} x+(-1)^{2/3}\right )}{\sqrt [6]{-c^2} d-(-1)^{2/3} e}\right )}{6 \sqrt {-c^2}}-\frac {\log (d+e x) \log \left (\frac {(-1)^{2/3} e \left (\sqrt [3]{-1} \sqrt [6]{-c^2} x+1\right )}{\sqrt [6]{-c^2} d+(-1)^{2/3} e}\right )}{6 \sqrt {-c^2}}+\frac {\log (d+e x) \log \left (\frac {\sqrt [3]{-1} e \left ((-1)^{2/3} \sqrt [6]{-c^2} x+1\right )}{\sqrt [6]{-c^2} d+\sqrt [3]{-1} e}\right )}{6 \sqrt {-c^2}}\right )}{e}\)

Input:

Int[(a + b*ArcTan[c*x^3])/(d + e*x),x]
 

Output:

((a + b*ArcTan[c*x^3])*Log[d + e*x])/e - (3*b*c*(-1/6*(Log[(e*(1 - (-c^2)^ 
(1/6)*x))/((-c^2)^(1/6)*d + e)]*Log[d + e*x])/Sqrt[-c^2] + (Log[-((e*(1 + 
(-c^2)^(1/6)*x))/((-c^2)^(1/6)*d - e))]*Log[d + e*x])/(6*Sqrt[-c^2]) - (Lo 
g[-((e*((-1)^(1/3) + (-c^2)^(1/6)*x))/((-c^2)^(1/6)*d - (-1)^(1/3)*e))]*Lo 
g[d + e*x])/(6*Sqrt[-c^2]) + (Log[-((e*((-1)^(2/3) + (-c^2)^(1/6)*x))/((-c 
^2)^(1/6)*d - (-1)^(2/3)*e))]*Log[d + e*x])/(6*Sqrt[-c^2]) - (Log[((-1)^(2 
/3)*e*(1 + (-1)^(1/3)*(-c^2)^(1/6)*x))/((-c^2)^(1/6)*d + (-1)^(2/3)*e)]*Lo 
g[d + e*x])/(6*Sqrt[-c^2]) + (Log[((-1)^(1/3)*e*(1 + (-1)^(2/3)*(-c^2)^(1/ 
6)*x))/((-c^2)^(1/6)*d + (-1)^(1/3)*e)]*Log[d + e*x])/(6*Sqrt[-c^2]) + Pol 
yLog[2, ((-c^2)^(1/6)*(d + e*x))/((-c^2)^(1/6)*d - e)]/(6*Sqrt[-c^2]) - Po 
lyLog[2, ((-c^2)^(1/6)*(d + e*x))/((-c^2)^(1/6)*d + e)]/(6*Sqrt[-c^2]) - P 
olyLog[2, ((-c^2)^(1/6)*(d + e*x))/((-c^2)^(1/6)*d - (-1)^(1/3)*e)]/(6*Sqr 
t[-c^2]) + PolyLog[2, ((-c^2)^(1/6)*(d + e*x))/((-c^2)^(1/6)*d + (-1)^(1/3 
)*e)]/(6*Sqrt[-c^2]) + PolyLog[2, ((-c^2)^(1/6)*(d + e*x))/((-c^2)^(1/6)*d 
 - (-1)^(2/3)*e)]/(6*Sqrt[-c^2]) - PolyLog[2, ((-c^2)^(1/6)*(d + e*x))/((- 
c^2)^(1/6)*d + (-1)^(2/3)*e)]/(6*Sqrt[-c^2])))/e
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2863
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_)) 
^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a 
 + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a, b, c 
, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]
 

rule 5391
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] 
:> Simp[Log[d + e*x]*((a + b*ArcTan[c*x^n])/e), x] - Simp[b*c*(n/e)   Int[x 
^(n - 1)*(Log[d + e*x]/(1 + c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, d, e, 
n}, x] && IntegerQ[n]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.46 (sec) , antiderivative size = 172, normalized size of antiderivative = 0.23

method result size
default \(\frac {a \ln \left (e x +d \right )}{e}+\frac {b \ln \left (e x +d \right ) \arctan \left (c \,x^{3}\right )}{e}-\frac {b \,e^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (\textit {\_Z}^{6} c^{2}-6 c^{2} d \,\textit {\_Z}^{5}+15 c^{2} d^{2} \textit {\_Z}^{4}-20 c^{2} d^{3} \textit {\_Z}^{3}+15 c^{2} d^{4} \textit {\_Z}^{2}-6 c^{2} d^{5} \textit {\_Z} +c^{2} d^{6}+e^{6}\right )}{\sum }\frac {\ln \left (e x +d \right ) \ln \left (\frac {-e x +\textit {\_R1} -d}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-e x +\textit {\_R1} -d}{\textit {\_R1}}\right )}{\textit {\_R1}^{3}-3 \textit {\_R1}^{2} d +3 \textit {\_R1} \,d^{2}-d^{3}}\right )}{2 c}\) \(172\)
parts \(\frac {a \ln \left (e x +d \right )}{e}+\frac {b \ln \left (e x +d \right ) \arctan \left (c \,x^{3}\right )}{e}-\frac {b \,e^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (\textit {\_Z}^{6} c^{2}-6 c^{2} d \,\textit {\_Z}^{5}+15 c^{2} d^{2} \textit {\_Z}^{4}-20 c^{2} d^{3} \textit {\_Z}^{3}+15 c^{2} d^{4} \textit {\_Z}^{2}-6 c^{2} d^{5} \textit {\_Z} +c^{2} d^{6}+e^{6}\right )}{\sum }\frac {\ln \left (e x +d \right ) \ln \left (\frac {-e x +\textit {\_R1} -d}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-e x +\textit {\_R1} -d}{\textit {\_R1}}\right )}{\textit {\_R1}^{3}-3 \textit {\_R1}^{2} d +3 \textit {\_R1} \,d^{2}-d^{3}}\right )}{2 c}\) \(172\)
risch \(\frac {i b \ln \left (e x +d \right ) \ln \left (-i c \,x^{3}+1\right )}{2 e}-\frac {i b \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} c d +3 \textit {\_Z} c \,d^{2}-c \,d^{3}+e^{3} \operatorname {RootOf}\left (\textit {\_Z}^{2}+1, \operatorname {index} =1\right )\right )}{\sum }\left (\ln \left (e x +d \right ) \ln \left (\frac {-e x +\textit {\_R1} -d}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-e x +\textit {\_R1} -d}{\textit {\_R1}}\right )\right )\right )}{2 e}+\frac {a \ln \left (e x +d \right )}{e}-\frac {i b \ln \left (e x +d \right ) \ln \left (i c \,x^{3}+1\right )}{2 e}+\frac {i b \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{3}-3 \textit {\_Z}^{2} c d +3 \textit {\_Z} c \,d^{2}-c \,d^{3}-e^{3} \operatorname {RootOf}\left (\textit {\_Z}^{2}+1, \operatorname {index} =1\right )\right )}{\sum }\left (\ln \left (e x +d \right ) \ln \left (\frac {-e x +\textit {\_R1} -d}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-e x +\textit {\_R1} -d}{\textit {\_R1}}\right )\right )\right )}{2 e}\) \(232\)

Input:

int((a+b*arctan(c*x^3))/(e*x+d),x,method=_RETURNVERBOSE)
 

Output:

a*ln(e*x+d)/e+b*ln(e*x+d)/e*arctan(c*x^3)-1/2*b*e^2/c*sum(1/(_R1^3-3*_R1^2 
*d+3*_R1*d^2-d^3)*(ln(e*x+d)*ln((-e*x+_R1-d)/_R1)+dilog((-e*x+_R1-d)/_R1)) 
,_R1=RootOf(_Z^6*c^2-6*_Z^5*c^2*d+15*_Z^4*c^2*d^2-20*_Z^3*c^2*d^3+15*_Z^2* 
c^2*d^4-6*_Z*c^2*d^5+c^2*d^6+e^6))
 

Fricas [F]

\[ \int \frac {a+b \arctan \left (c x^3\right )}{d+e x} \, dx=\int { \frac {b \arctan \left (c x^{3}\right ) + a}{e x + d} \,d x } \] Input:

integrate((a+b*arctan(c*x^3))/(e*x+d),x, algorithm="fricas")
 

Output:

integral((b*arctan(c*x^3) + a)/(e*x + d), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {a+b \arctan \left (c x^3\right )}{d+e x} \, dx=\text {Timed out} \] Input:

integrate((a+b*atan(c*x**3))/(e*x+d),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {a+b \arctan \left (c x^3\right )}{d+e x} \, dx=\int { \frac {b \arctan \left (c x^{3}\right ) + a}{e x + d} \,d x } \] Input:

integrate((a+b*arctan(c*x^3))/(e*x+d),x, algorithm="maxima")
 

Output:

2*b*integrate(1/2*arctan(c*x^3)/(e*x + d), x) + a*log(e*x + d)/e
 

Giac [F]

\[ \int \frac {a+b \arctan \left (c x^3\right )}{d+e x} \, dx=\int { \frac {b \arctan \left (c x^{3}\right ) + a}{e x + d} \,d x } \] Input:

integrate((a+b*arctan(c*x^3))/(e*x+d),x, algorithm="giac")
 

Output:

integrate((b*arctan(c*x^3) + a)/(e*x + d), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \arctan \left (c x^3\right )}{d+e x} \, dx=\int \frac {a+b\,\mathrm {atan}\left (c\,x^3\right )}{d+e\,x} \,d x \] Input:

int((a + b*atan(c*x^3))/(d + e*x),x)
 

Output:

int((a + b*atan(c*x^3))/(d + e*x), x)
 

Reduce [F]

\[ \int \frac {a+b \arctan \left (c x^3\right )}{d+e x} \, dx=\frac {\left (\int \frac {\mathit {atan} \left (c \,x^{3}\right )}{e x +d}d x \right ) b e +\mathrm {log}\left (e x +d \right ) a}{e} \] Input:

int((a+b*atan(c*x^3))/(e*x+d),x)
                                                                                    
                                                                                    
 

Output:

(int(atan(c*x**3)/(d + e*x),x)*b*e + log(d + e*x)*a)/e