\(\int \frac {\arctan (a x)}{x^4 \sqrt {c+a^2 c x^2}} \, dx\) [231]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 118 \[ \int \frac {\arctan (a x)}{x^4 \sqrt {c+a^2 c x^2}} \, dx=-\frac {a \sqrt {c+a^2 c x^2}}{6 c x^2}-\frac {\sqrt {c+a^2 c x^2} \arctan (a x)}{3 c x^3}+\frac {2 a^2 \sqrt {c+a^2 c x^2} \arctan (a x)}{3 c x}+\frac {5 a^3 \text {arctanh}\left (\frac {\sqrt {c+a^2 c x^2}}{\sqrt {c}}\right )}{6 \sqrt {c}} \] Output:

-1/6*a*(a^2*c*x^2+c)^(1/2)/c/x^2-1/3*(a^2*c*x^2+c)^(1/2)*arctan(a*x)/c/x^3 
+2/3*a^2*(a^2*c*x^2+c)^(1/2)*arctan(a*x)/c/x+5/6*a^3*arctanh((a^2*c*x^2+c) 
^(1/2)/c^(1/2))/c^(1/2)
 

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.93 \[ \int \frac {\arctan (a x)}{x^4 \sqrt {c+a^2 c x^2}} \, dx=\frac {-a x \sqrt {c+a^2 c x^2}+2 \left (-1+2 a^2 x^2\right ) \sqrt {c+a^2 c x^2} \arctan (a x)-5 a^3 \sqrt {c} x^3 \log (x)+5 a^3 \sqrt {c} x^3 \log \left (c+\sqrt {c} \sqrt {c+a^2 c x^2}\right )}{6 c x^3} \] Input:

Integrate[ArcTan[a*x]/(x^4*Sqrt[c + a^2*c*x^2]),x]
 

Output:

(-(a*x*Sqrt[c + a^2*c*x^2]) + 2*(-1 + 2*a^2*x^2)*Sqrt[c + a^2*c*x^2]*ArcTa 
n[a*x] - 5*a^3*Sqrt[c]*x^3*Log[x] + 5*a^3*Sqrt[c]*x^3*Log[c + Sqrt[c]*Sqrt 
[c + a^2*c*x^2]])/(6*c*x^3)
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.27, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.409, Rules used = {5497, 243, 52, 73, 221, 5479, 243, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\arctan (a x)}{x^4 \sqrt {a^2 c x^2+c}} \, dx\)

\(\Big \downarrow \) 5497

\(\displaystyle -\frac {2}{3} a^2 \int \frac {\arctan (a x)}{x^2 \sqrt {a^2 c x^2+c}}dx+\frac {1}{3} a \int \frac {1}{x^3 \sqrt {a^2 c x^2+c}}dx-\frac {\arctan (a x) \sqrt {a^2 c x^2+c}}{3 c x^3}\)

\(\Big \downarrow \) 243

\(\displaystyle -\frac {2}{3} a^2 \int \frac {\arctan (a x)}{x^2 \sqrt {a^2 c x^2+c}}dx+\frac {1}{6} a \int \frac {1}{x^4 \sqrt {a^2 c x^2+c}}dx^2-\frac {\arctan (a x) \sqrt {a^2 c x^2+c}}{3 c x^3}\)

\(\Big \downarrow \) 52

\(\displaystyle -\frac {2}{3} a^2 \int \frac {\arctan (a x)}{x^2 \sqrt {a^2 c x^2+c}}dx+\frac {1}{6} a \left (-\frac {1}{2} a^2 \int \frac {1}{x^2 \sqrt {a^2 c x^2+c}}dx^2-\frac {\sqrt {a^2 c x^2+c}}{c x^2}\right )-\frac {\arctan (a x) \sqrt {a^2 c x^2+c}}{3 c x^3}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {2}{3} a^2 \int \frac {\arctan (a x)}{x^2 \sqrt {a^2 c x^2+c}}dx+\frac {1}{6} a \left (-\frac {\int \frac {1}{\frac {x^4}{a^2 c}-\frac {1}{a^2}}d\sqrt {a^2 c x^2+c}}{c}-\frac {\sqrt {a^2 c x^2+c}}{c x^2}\right )-\frac {\arctan (a x) \sqrt {a^2 c x^2+c}}{3 c x^3}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {2}{3} a^2 \int \frac {\arctan (a x)}{x^2 \sqrt {a^2 c x^2+c}}dx-\frac {\arctan (a x) \sqrt {a^2 c x^2+c}}{3 c x^3}+\frac {1}{6} a \left (\frac {a^2 \text {arctanh}\left (\frac {\sqrt {a^2 c x^2+c}}{\sqrt {c}}\right )}{\sqrt {c}}-\frac {\sqrt {a^2 c x^2+c}}{c x^2}\right )\)

\(\Big \downarrow \) 5479

\(\displaystyle -\frac {2}{3} a^2 \left (a \int \frac {1}{x \sqrt {a^2 c x^2+c}}dx-\frac {\arctan (a x) \sqrt {a^2 c x^2+c}}{c x}\right )-\frac {\arctan (a x) \sqrt {a^2 c x^2+c}}{3 c x^3}+\frac {1}{6} a \left (\frac {a^2 \text {arctanh}\left (\frac {\sqrt {a^2 c x^2+c}}{\sqrt {c}}\right )}{\sqrt {c}}-\frac {\sqrt {a^2 c x^2+c}}{c x^2}\right )\)

\(\Big \downarrow \) 243

\(\displaystyle -\frac {2}{3} a^2 \left (\frac {1}{2} a \int \frac {1}{x^2 \sqrt {a^2 c x^2+c}}dx^2-\frac {\arctan (a x) \sqrt {a^2 c x^2+c}}{c x}\right )-\frac {\arctan (a x) \sqrt {a^2 c x^2+c}}{3 c x^3}+\frac {1}{6} a \left (\frac {a^2 \text {arctanh}\left (\frac {\sqrt {a^2 c x^2+c}}{\sqrt {c}}\right )}{\sqrt {c}}-\frac {\sqrt {a^2 c x^2+c}}{c x^2}\right )\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {2}{3} a^2 \left (\frac {\int \frac {1}{\frac {x^4}{a^2 c}-\frac {1}{a^2}}d\sqrt {a^2 c x^2+c}}{a c}-\frac {\arctan (a x) \sqrt {a^2 c x^2+c}}{c x}\right )-\frac {\arctan (a x) \sqrt {a^2 c x^2+c}}{3 c x^3}+\frac {1}{6} a \left (\frac {a^2 \text {arctanh}\left (\frac {\sqrt {a^2 c x^2+c}}{\sqrt {c}}\right )}{\sqrt {c}}-\frac {\sqrt {a^2 c x^2+c}}{c x^2}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {2}{3} a^2 \left (-\frac {\arctan (a x) \sqrt {a^2 c x^2+c}}{c x}-\frac {a \text {arctanh}\left (\frac {\sqrt {a^2 c x^2+c}}{\sqrt {c}}\right )}{\sqrt {c}}\right )-\frac {\arctan (a x) \sqrt {a^2 c x^2+c}}{3 c x^3}+\frac {1}{6} a \left (\frac {a^2 \text {arctanh}\left (\frac {\sqrt {a^2 c x^2+c}}{\sqrt {c}}\right )}{\sqrt {c}}-\frac {\sqrt {a^2 c x^2+c}}{c x^2}\right )\)

Input:

Int[ArcTan[a*x]/(x^4*Sqrt[c + a^2*c*x^2]),x]
 

Output:

-1/3*(Sqrt[c + a^2*c*x^2]*ArcTan[a*x])/(c*x^3) - (2*a^2*(-((Sqrt[c + a^2*c 
*x^2]*ArcTan[a*x])/(c*x)) - (a*ArcTanh[Sqrt[c + a^2*c*x^2]/Sqrt[c]])/Sqrt[ 
c]))/3 + (a*(-(Sqrt[c + a^2*c*x^2]/(c*x^2)) + (a^2*ArcTanh[Sqrt[c + a^2*c* 
x^2]/Sqrt[c]])/Sqrt[c]))/6
 

Defintions of rubi rules used

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 5479
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^2)^(q + 1)*((a + 
 b*ArcTan[c*x])^p/(d*f*(m + 1))), x] - Simp[b*c*(p/(f*(m + 1)))   Int[(f*x) 
^(m + 1)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p - 1), x], x] /; FreeQ[{a, b, 
c, d, e, f, m, q}, x] && EqQ[e, c^2*d] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] 
&& NeQ[m, -1]
 

rule 5497
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) 
+ (e_.)*(x_)^2], x_Symbol] :> Simp[(f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*Ar 
cTan[c*x])^p/(d*f*(m + 1))), x] + (-Simp[b*c*(p/(f*(m + 1)))   Int[(f*x)^(m 
 + 1)*((a + b*ArcTan[c*x])^(p - 1)/Sqrt[d + e*x^2]), x], x] - Simp[c^2*((m 
+ 2)/(f^2*(m + 1)))   Int[(f*x)^(m + 2)*((a + b*ArcTan[c*x])^p/Sqrt[d + e*x 
^2]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[p, 0] 
 && LtQ[m, -1] && NeQ[m, -2]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.41 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.38

method result size
default \(\frac {\left (4 x^{2} a^{2} \arctan \left (a x \right )-a x -2 \arctan \left (a x \right )\right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{6 c \,x^{3}}-\frac {5 a^{3} \ln \left (\frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}-1\right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{6 \sqrt {a^{2} x^{2}+1}\, c}+\frac {5 a^{3} \ln \left (1+\frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}\right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{6 \sqrt {a^{2} x^{2}+1}\, c}\) \(163\)

Input:

int(arctan(a*x)/x^4/(a^2*c*x^2+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/6*(4*x^2*a^2*arctan(a*x)-a*x-2*arctan(a*x))*(c*(a*x-I)*(a*x+I))^(1/2)/c/ 
x^3-5/6*a^3*ln((1+I*a*x)/(a^2*x^2+1)^(1/2)-1)*(c*(a*x-I)*(a*x+I))^(1/2)/(a 
^2*x^2+1)^(1/2)/c+5/6*a^3*ln(1+(1+I*a*x)/(a^2*x^2+1)^(1/2))*(c*(a*x-I)*(a* 
x+I))^(1/2)/(a^2*x^2+1)^(1/2)/c
 

Fricas [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.75 \[ \int \frac {\arctan (a x)}{x^4 \sqrt {c+a^2 c x^2}} \, dx=\frac {5 \, a^{3} \sqrt {c} x^{3} \log \left (-\frac {a^{2} c x^{2} + 2 \, \sqrt {a^{2} c x^{2} + c} \sqrt {c} + 2 \, c}{x^{2}}\right ) - 2 \, \sqrt {a^{2} c x^{2} + c} {\left (a x - 2 \, {\left (2 \, a^{2} x^{2} - 1\right )} \arctan \left (a x\right )\right )}}{12 \, c x^{3}} \] Input:

integrate(arctan(a*x)/x^4/(a^2*c*x^2+c)^(1/2),x, algorithm="fricas")
 

Output:

1/12*(5*a^3*sqrt(c)*x^3*log(-(a^2*c*x^2 + 2*sqrt(a^2*c*x^2 + c)*sqrt(c) + 
2*c)/x^2) - 2*sqrt(a^2*c*x^2 + c)*(a*x - 2*(2*a^2*x^2 - 1)*arctan(a*x)))/( 
c*x^3)
 

Sympy [F]

\[ \int \frac {\arctan (a x)}{x^4 \sqrt {c+a^2 c x^2}} \, dx=\int \frac {\operatorname {atan}{\left (a x \right )}}{x^{4} \sqrt {c \left (a^{2} x^{2} + 1\right )}}\, dx \] Input:

integrate(atan(a*x)/x**4/(a**2*c*x**2+c)**(1/2),x)
 

Output:

Integral(atan(a*x)/(x**4*sqrt(c*(a**2*x**2 + 1))), x)
 

Maxima [A] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.69 \[ \int \frac {\arctan (a x)}{x^4 \sqrt {c+a^2 c x^2}} \, dx=\frac {{\left (5 \, a^{2} \operatorname {arsinh}\left (\frac {1}{a {\left | x \right |}}\right ) - \frac {\sqrt {a^{2} x^{2} + 1}}{x^{2}}\right )} a + 2 \, {\left (\frac {2 \, \sqrt {a^{2} x^{2} + 1} a^{2}}{x} - \frac {\sqrt {a^{2} x^{2} + 1}}{x^{3}}\right )} \arctan \left (a x\right )}{6 \, \sqrt {c}} \] Input:

integrate(arctan(a*x)/x^4/(a^2*c*x^2+c)^(1/2),x, algorithm="maxima")
 

Output:

1/6*((5*a^2*arcsinh(1/(a*abs(x))) - sqrt(a^2*x^2 + 1)/x^2)*a + 2*(2*sqrt(a 
^2*x^2 + 1)*a^2/x - sqrt(a^2*x^2 + 1)/x^3)*arctan(a*x))/sqrt(c)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\arctan (a x)}{x^4 \sqrt {c+a^2 c x^2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(arctan(a*x)/x^4/(a^2*c*x^2+c)^(1/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Degree mismatch inside factorisatio 
n over extensionindex.cc index_m i_lex_is_greater Error: Bad Argument Valu 
e
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\arctan (a x)}{x^4 \sqrt {c+a^2 c x^2}} \, dx=\int \frac {\mathrm {atan}\left (a\,x\right )}{x^4\,\sqrt {c\,a^2\,x^2+c}} \,d x \] Input:

int(atan(a*x)/(x^4*(c + a^2*c*x^2)^(1/2)),x)
 

Output:

int(atan(a*x)/(x^4*(c + a^2*c*x^2)^(1/2)), x)
                                                                                    
                                                                                    
 

Reduce [B] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.94 \[ \int \frac {\arctan (a x)}{x^4 \sqrt {c+a^2 c x^2}} \, dx=\frac {\sqrt {c}\, \left (4 \sqrt {a^{2} x^{2}+1}\, \mathit {atan} \left (a x \right ) a^{2} x^{2}-2 \sqrt {a^{2} x^{2}+1}\, \mathit {atan} \left (a x \right )-\sqrt {a^{2} x^{2}+1}\, a x -5 \,\mathrm {log}\left (\sqrt {a^{2} x^{2}+1}+a x -1\right ) a^{3} x^{3}+5 \,\mathrm {log}\left (\sqrt {a^{2} x^{2}+1}+a x +1\right ) a^{3} x^{3}\right )}{6 c \,x^{3}} \] Input:

int(atan(a*x)/x^4/(a^2*c*x^2+c)^(1/2),x)
 

Output:

(sqrt(c)*(4*sqrt(a**2*x**2 + 1)*atan(a*x)*a**2*x**2 - 2*sqrt(a**2*x**2 + 1 
)*atan(a*x) - sqrt(a**2*x**2 + 1)*a*x - 5*log(sqrt(a**2*x**2 + 1) + a*x - 
1)*a**3*x**3 + 5*log(sqrt(a**2*x**2 + 1) + a*x + 1)*a**3*x**3))/(6*c*x**3)