\(\int \frac {\arctan (a x)^2}{(c+a^2 c x^2)^3} \, dx\) [302]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 169 \[ \int \frac {\arctan (a x)^2}{\left (c+a^2 c x^2\right )^3} \, dx=-\frac {x}{32 c^3 \left (1+a^2 x^2\right )^2}-\frac {15 x}{64 c^3 \left (1+a^2 x^2\right )}-\frac {15 \arctan (a x)}{64 a c^3}+\frac {\arctan (a x)}{8 a c^3 \left (1+a^2 x^2\right )^2}+\frac {3 \arctan (a x)}{8 a c^3 \left (1+a^2 x^2\right )}+\frac {x \arctan (a x)^2}{4 c^3 \left (1+a^2 x^2\right )^2}+\frac {3 x \arctan (a x)^2}{8 c^3 \left (1+a^2 x^2\right )}+\frac {\arctan (a x)^3}{8 a c^3} \] Output:

-1/32*x/c^3/(a^2*x^2+1)^2-15/64*x/c^3/(a^2*x^2+1)-15/64*arctan(a*x)/a/c^3+ 
1/8*arctan(a*x)/a/c^3/(a^2*x^2+1)^2+3/8*arctan(a*x)/a/c^3/(a^2*x^2+1)+1/4* 
x*arctan(a*x)^2/c^3/(a^2*x^2+1)^2+3/8*x*arctan(a*x)^2/c^3/(a^2*x^2+1)+1/8* 
arctan(a*x)^3/a/c^3
 

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.58 \[ \int \frac {\arctan (a x)^2}{\left (c+a^2 c x^2\right )^3} \, dx=\frac {-a x \left (17+15 a^2 x^2\right )+\left (17-6 a^2 x^2-15 a^4 x^4\right ) \arctan (a x)+8 a x \left (5+3 a^2 x^2\right ) \arctan (a x)^2+8 \left (1+a^2 x^2\right )^2 \arctan (a x)^3}{64 a c^3 \left (1+a^2 x^2\right )^2} \] Input:

Integrate[ArcTan[a*x]^2/(c + a^2*c*x^2)^3,x]
 

Output:

(-(a*x*(17 + 15*a^2*x^2)) + (17 - 6*a^2*x^2 - 15*a^4*x^4)*ArcTan[a*x] + 8* 
a*x*(5 + 3*a^2*x^2)*ArcTan[a*x]^2 + 8*(1 + a^2*x^2)^2*ArcTan[a*x]^3)/(64*a 
*c^3*(1 + a^2*x^2)^2)
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.30, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.474, Rules used = {5435, 27, 215, 215, 218, 5427, 5465, 215, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\arctan (a x)^2}{\left (a^2 c x^2+c\right )^3} \, dx\)

\(\Big \downarrow \) 5435

\(\displaystyle \frac {3 \int \frac {\arctan (a x)^2}{c^2 \left (a^2 x^2+1\right )^2}dx}{4 c}-\frac {1}{8} \int \frac {1}{\left (a^2 c x^2+c\right )^3}dx+\frac {x \arctan (a x)^2}{4 c^3 \left (a^2 x^2+1\right )^2}+\frac {\arctan (a x)}{8 a c^3 \left (a^2 x^2+1\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \int \frac {\arctan (a x)^2}{\left (a^2 x^2+1\right )^2}dx}{4 c^3}-\frac {1}{8} \int \frac {1}{\left (a^2 c x^2+c\right )^3}dx+\frac {x \arctan (a x)^2}{4 c^3 \left (a^2 x^2+1\right )^2}+\frac {\arctan (a x)}{8 a c^3 \left (a^2 x^2+1\right )^2}\)

\(\Big \downarrow \) 215

\(\displaystyle \frac {3 \int \frac {\arctan (a x)^2}{\left (a^2 x^2+1\right )^2}dx}{4 c^3}+\frac {1}{8} \left (-\frac {3 \int \frac {1}{\left (a^2 c x^2+c\right )^2}dx}{4 c}-\frac {x}{4 c^3 \left (a^2 x^2+1\right )^2}\right )+\frac {x \arctan (a x)^2}{4 c^3 \left (a^2 x^2+1\right )^2}+\frac {\arctan (a x)}{8 a c^3 \left (a^2 x^2+1\right )^2}\)

\(\Big \downarrow \) 215

\(\displaystyle \frac {3 \int \frac {\arctan (a x)^2}{\left (a^2 x^2+1\right )^2}dx}{4 c^3}+\frac {1}{8} \left (-\frac {3 \left (\frac {\int \frac {1}{a^2 c x^2+c}dx}{2 c}+\frac {x}{2 c^2 \left (a^2 x^2+1\right )}\right )}{4 c}-\frac {x}{4 c^3 \left (a^2 x^2+1\right )^2}\right )+\frac {x \arctan (a x)^2}{4 c^3 \left (a^2 x^2+1\right )^2}+\frac {\arctan (a x)}{8 a c^3 \left (a^2 x^2+1\right )^2}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {3 \int \frac {\arctan (a x)^2}{\left (a^2 x^2+1\right )^2}dx}{4 c^3}+\frac {x \arctan (a x)^2}{4 c^3 \left (a^2 x^2+1\right )^2}+\frac {\arctan (a x)}{8 a c^3 \left (a^2 x^2+1\right )^2}+\frac {1}{8} \left (-\frac {3 \left (\frac {x}{2 c^2 \left (a^2 x^2+1\right )}+\frac {\arctan (a x)}{2 a c^2}\right )}{4 c}-\frac {x}{4 c^3 \left (a^2 x^2+1\right )^2}\right )\)

\(\Big \downarrow \) 5427

\(\displaystyle \frac {3 \left (-a \int \frac {x \arctan (a x)}{\left (a^2 x^2+1\right )^2}dx+\frac {x \arctan (a x)^2}{2 \left (a^2 x^2+1\right )}+\frac {\arctan (a x)^3}{6 a}\right )}{4 c^3}+\frac {x \arctan (a x)^2}{4 c^3 \left (a^2 x^2+1\right )^2}+\frac {\arctan (a x)}{8 a c^3 \left (a^2 x^2+1\right )^2}+\frac {1}{8} \left (-\frac {3 \left (\frac {x}{2 c^2 \left (a^2 x^2+1\right )}+\frac {\arctan (a x)}{2 a c^2}\right )}{4 c}-\frac {x}{4 c^3 \left (a^2 x^2+1\right )^2}\right )\)

\(\Big \downarrow \) 5465

\(\displaystyle \frac {3 \left (-a \left (\frac {\int \frac {1}{\left (a^2 x^2+1\right )^2}dx}{2 a}-\frac {\arctan (a x)}{2 a^2 \left (a^2 x^2+1\right )}\right )+\frac {x \arctan (a x)^2}{2 \left (a^2 x^2+1\right )}+\frac {\arctan (a x)^3}{6 a}\right )}{4 c^3}+\frac {x \arctan (a x)^2}{4 c^3 \left (a^2 x^2+1\right )^2}+\frac {\arctan (a x)}{8 a c^3 \left (a^2 x^2+1\right )^2}+\frac {1}{8} \left (-\frac {3 \left (\frac {x}{2 c^2 \left (a^2 x^2+1\right )}+\frac {\arctan (a x)}{2 a c^2}\right )}{4 c}-\frac {x}{4 c^3 \left (a^2 x^2+1\right )^2}\right )\)

\(\Big \downarrow \) 215

\(\displaystyle \frac {3 \left (-a \left (\frac {\frac {1}{2} \int \frac {1}{a^2 x^2+1}dx+\frac {x}{2 \left (a^2 x^2+1\right )}}{2 a}-\frac {\arctan (a x)}{2 a^2 \left (a^2 x^2+1\right )}\right )+\frac {x \arctan (a x)^2}{2 \left (a^2 x^2+1\right )}+\frac {\arctan (a x)^3}{6 a}\right )}{4 c^3}+\frac {x \arctan (a x)^2}{4 c^3 \left (a^2 x^2+1\right )^2}+\frac {\arctan (a x)}{8 a c^3 \left (a^2 x^2+1\right )^2}+\frac {1}{8} \left (-\frac {3 \left (\frac {x}{2 c^2 \left (a^2 x^2+1\right )}+\frac {\arctan (a x)}{2 a c^2}\right )}{4 c}-\frac {x}{4 c^3 \left (a^2 x^2+1\right )^2}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {x \arctan (a x)^2}{4 c^3 \left (a^2 x^2+1\right )^2}+\frac {\arctan (a x)}{8 a c^3 \left (a^2 x^2+1\right )^2}+\frac {3 \left (\frac {x \arctan (a x)^2}{2 \left (a^2 x^2+1\right )}-a \left (\frac {\frac {x}{2 \left (a^2 x^2+1\right )}+\frac {\arctan (a x)}{2 a}}{2 a}-\frac {\arctan (a x)}{2 a^2 \left (a^2 x^2+1\right )}\right )+\frac {\arctan (a x)^3}{6 a}\right )}{4 c^3}+\frac {1}{8} \left (-\frac {3 \left (\frac {x}{2 c^2 \left (a^2 x^2+1\right )}+\frac {\arctan (a x)}{2 a c^2}\right )}{4 c}-\frac {x}{4 c^3 \left (a^2 x^2+1\right )^2}\right )\)

Input:

Int[ArcTan[a*x]^2/(c + a^2*c*x^2)^3,x]
 

Output:

ArcTan[a*x]/(8*a*c^3*(1 + a^2*x^2)^2) + (x*ArcTan[a*x]^2)/(4*c^3*(1 + a^2* 
x^2)^2) + (-1/4*x/(c^3*(1 + a^2*x^2)^2) - (3*(x/(2*c^2*(1 + a^2*x^2)) + Ar 
cTan[a*x]/(2*a*c^2)))/(4*c))/8 + (3*((x*ArcTan[a*x]^2)/(2*(1 + a^2*x^2)) + 
 ArcTan[a*x]^3/(6*a) - a*(-1/2*ArcTan[a*x]/(a^2*(1 + a^2*x^2)) + (x/(2*(1 
+ a^2*x^2)) + ArcTan[a*x]/(2*a))/(2*a))))/(4*c^3)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 215
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^2)^(p + 1) 
/(2*a*(p + 1))), x] + Simp[(2*p + 3)/(2*a*(p + 1))   Int[(a + b*x^2)^(p + 1 
), x], x] /; FreeQ[{a, b}, x] && LtQ[p, -1] && (IntegerQ[4*p] || IntegerQ[6 
*p])
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 5427
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2)^2, x_Sym 
bol] :> Simp[x*((a + b*ArcTan[c*x])^p/(2*d*(d + e*x^2))), x] + (Simp[(a + b 
*ArcTan[c*x])^(p + 1)/(2*b*c*d^2*(p + 1)), x] - Simp[b*c*(p/2)   Int[x*((a 
+ b*ArcTan[c*x])^(p - 1)/(d + e*x^2)^2), x], x]) /; FreeQ[{a, b, c, d, e}, 
x] && EqQ[e, c^2*d] && GtQ[p, 0]
 

rule 5435
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_S 
ymbol] :> Simp[b*p*(d + e*x^2)^(q + 1)*((a + b*ArcTan[c*x])^(p - 1)/(4*c*d* 
(q + 1)^2)), x] + (-Simp[x*(d + e*x^2)^(q + 1)*((a + b*ArcTan[c*x])^p/(2*d* 
(q + 1))), x] + Simp[(2*q + 3)/(2*d*(q + 1))   Int[(d + e*x^2)^(q + 1)*(a + 
 b*ArcTan[c*x])^p, x], x] - Simp[b^2*p*((p - 1)/(4*(q + 1)^2))   Int[(d + e 
*x^2)^q*(a + b*ArcTan[c*x])^(p - 2), x], x]) /; FreeQ[{a, b, c, d, e}, x] & 
& EqQ[e, c^2*d] && LtQ[q, -1] && GtQ[p, 1] && NeQ[q, -3/2]
 

rule 5465
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_ 
.), x_Symbol] :> Simp[(d + e*x^2)^(q + 1)*((a + b*ArcTan[c*x])^p/(2*e*(q + 
1))), x] - Simp[b*(p/(2*c*(q + 1)))   Int[(d + e*x^2)^q*(a + b*ArcTan[c*x]) 
^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[e, c^2*d] && GtQ[p, 
 0] && NeQ[q, -1]
 
Maple [A] (verified)

Time = 0.90 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.73

method result size
parallelrisch \(\frac {8 \arctan \left (a x \right )^{3} a^{4} x^{4}-15 x^{4} \arctan \left (a x \right ) a^{4}+24 a^{3} \arctan \left (a x \right )^{2} x^{3}+16 \arctan \left (a x \right )^{3} a^{2} x^{2}-15 a^{3} x^{3}-6 x^{2} a^{2} \arctan \left (a x \right )+40 a \arctan \left (a x \right )^{2} x +8 \arctan \left (a x \right )^{3}-17 a x +17 \arctan \left (a x \right )}{64 c^{3} \left (a^{2} x^{2}+1\right )^{2} a}\) \(123\)
derivativedivides \(\frac {\frac {a x \arctan \left (a x \right )^{2}}{4 c^{3} \left (a^{2} x^{2}+1\right )^{2}}+\frac {3 a x \arctan \left (a x \right )^{2}}{8 c^{3} \left (a^{2} x^{2}+1\right )}+\frac {3 \arctan \left (a x \right )^{3}}{8 c^{3}}-\frac {-\frac {3 \arctan \left (a x \right )}{2 \left (a^{2} x^{2}+1\right )}-\frac {\arctan \left (a x \right )}{2 \left (a^{2} x^{2}+1\right )^{2}}+\frac {\frac {15}{8} a^{3} x^{3}+\frac {17}{8} a x}{2 \left (a^{2} x^{2}+1\right )^{2}}+\frac {15 \arctan \left (a x \right )}{16}+\arctan \left (a x \right )^{3}}{4 c^{3}}}{a}\) \(143\)
default \(\frac {\frac {a x \arctan \left (a x \right )^{2}}{4 c^{3} \left (a^{2} x^{2}+1\right )^{2}}+\frac {3 a x \arctan \left (a x \right )^{2}}{8 c^{3} \left (a^{2} x^{2}+1\right )}+\frac {3 \arctan \left (a x \right )^{3}}{8 c^{3}}-\frac {-\frac {3 \arctan \left (a x \right )}{2 \left (a^{2} x^{2}+1\right )}-\frac {\arctan \left (a x \right )}{2 \left (a^{2} x^{2}+1\right )^{2}}+\frac {\frac {15}{8} a^{3} x^{3}+\frac {17}{8} a x}{2 \left (a^{2} x^{2}+1\right )^{2}}+\frac {15 \arctan \left (a x \right )}{16}+\arctan \left (a x \right )^{3}}{4 c^{3}}}{a}\) \(143\)
parts \(\frac {x \arctan \left (a x \right )^{2}}{4 c^{3} \left (a^{2} x^{2}+1\right )^{2}}+\frac {3 x \arctan \left (a x \right )^{2}}{8 c^{3} \left (a^{2} x^{2}+1\right )}+\frac {3 \arctan \left (a x \right )^{3}}{8 a \,c^{3}}-\frac {\frac {-\frac {3 \arctan \left (a x \right )}{2 \left (a^{2} x^{2}+1\right )}-\frac {\arctan \left (a x \right )}{2 \left (a^{2} x^{2}+1\right )^{2}}+\frac {\frac {15}{8} a^{3} x^{3}+\frac {17}{8} a x}{2 \left (a^{2} x^{2}+1\right )^{2}}+\frac {15 \arctan \left (a x \right )}{16}}{a}+\frac {\arctan \left (a x \right )^{3}}{a}}{4 c^{3}}\) \(149\)
risch \(\frac {i \ln \left (i a x +1\right )^{3}}{64 a \,c^{3}}-\frac {i \left (3 x^{4} \ln \left (-i a x +1\right ) a^{4}+6 a^{2} x^{2} \ln \left (-i a x +1\right )-6 i a^{3} x^{3}+3 \ln \left (-i a x +1\right )-10 i a x \right ) \ln \left (i a x +1\right )^{2}}{64 c^{3} \left (a^{2} x^{2}+1\right )^{2} a}+\frac {i \left (3 a^{4} x^{4} \ln \left (-i a x +1\right )^{2}+6 a^{2} x^{2} \ln \left (-i a x +1\right )^{2}-12 i x^{3} \ln \left (-i a x +1\right ) a^{3}-12 a^{2} x^{2}+3 \ln \left (-i a x +1\right )^{2}-20 i a x \ln \left (-i a x +1\right )-16\right ) \ln \left (i a x +1\right )}{64 \left (a x +i\right )^{2} a \,c^{3} \left (a x -i\right )^{2}}+\frac {i \left (-2 a^{4} x^{4} \ln \left (-i a x +1\right )^{3}+15 \ln \left (-i a x -1\right ) a^{4} x^{4}-15 \ln \left (i a x -1\right ) a^{4} x^{4}-4 a^{2} x^{2} \ln \left (-i a x +1\right )^{3}+12 i a^{3} x^{3} \ln \left (-i a x +1\right )^{2}+30 \ln \left (-i a x -1\right ) a^{2} x^{2}-30 \ln \left (i a x -1\right ) a^{2} x^{2}+24 a^{2} x^{2} \ln \left (-i a x +1\right )+30 i a^{3} x^{3}-2 \ln \left (-i a x +1\right )^{3}+20 i a x \ln \left (-i a x +1\right )^{2}+15 \ln \left (-i a x -1\right )-15 \ln \left (i a x -1\right )+32 \ln \left (-i a x +1\right )+34 i a x \right )}{128 \left (a x +i\right )^{2} a \,c^{3} \left (a x -i\right )^{2}}\) \(461\)

Input:

int(arctan(a*x)^2/(a^2*c*x^2+c)^3,x,method=_RETURNVERBOSE)
 

Output:

1/64*(8*arctan(a*x)^3*a^4*x^4-15*x^4*arctan(a*x)*a^4+24*a^3*arctan(a*x)^2* 
x^3+16*arctan(a*x)^3*a^2*x^2-15*a^3*x^3-6*x^2*a^2*arctan(a*x)+40*a*arctan( 
a*x)^2*x+8*arctan(a*x)^3-17*a*x+17*arctan(a*x))/c^3/(a^2*x^2+1)^2/a
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.67 \[ \int \frac {\arctan (a x)^2}{\left (c+a^2 c x^2\right )^3} \, dx=-\frac {15 \, a^{3} x^{3} - 8 \, {\left (a^{4} x^{4} + 2 \, a^{2} x^{2} + 1\right )} \arctan \left (a x\right )^{3} - 8 \, {\left (3 \, a^{3} x^{3} + 5 \, a x\right )} \arctan \left (a x\right )^{2} + 17 \, a x + {\left (15 \, a^{4} x^{4} + 6 \, a^{2} x^{2} - 17\right )} \arctan \left (a x\right )}{64 \, {\left (a^{5} c^{3} x^{4} + 2 \, a^{3} c^{3} x^{2} + a c^{3}\right )}} \] Input:

integrate(arctan(a*x)^2/(a^2*c*x^2+c)^3,x, algorithm="fricas")
 

Output:

-1/64*(15*a^3*x^3 - 8*(a^4*x^4 + 2*a^2*x^2 + 1)*arctan(a*x)^3 - 8*(3*a^3*x 
^3 + 5*a*x)*arctan(a*x)^2 + 17*a*x + (15*a^4*x^4 + 6*a^2*x^2 - 17)*arctan( 
a*x))/(a^5*c^3*x^4 + 2*a^3*c^3*x^2 + a*c^3)
 

Sympy [F]

\[ \int \frac {\arctan (a x)^2}{\left (c+a^2 c x^2\right )^3} \, dx=\frac {\int \frac {\operatorname {atan}^{2}{\left (a x \right )}}{a^{6} x^{6} + 3 a^{4} x^{4} + 3 a^{2} x^{2} + 1}\, dx}{c^{3}} \] Input:

integrate(atan(a*x)**2/(a**2*c*x**2+c)**3,x)
 

Output:

Integral(atan(a*x)**2/(a**6*x**6 + 3*a**4*x**4 + 3*a**2*x**2 + 1), x)/c**3
 

Maxima [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 232, normalized size of antiderivative = 1.37 \[ \int \frac {\arctan (a x)^2}{\left (c+a^2 c x^2\right )^3} \, dx=\frac {1}{8} \, {\left (\frac {3 \, a^{2} x^{3} + 5 \, x}{a^{4} c^{3} x^{4} + 2 \, a^{2} c^{3} x^{2} + c^{3}} + \frac {3 \, \arctan \left (a x\right )}{a c^{3}}\right )} \arctan \left (a x\right )^{2} - \frac {{\left (15 \, a^{3} x^{3} - 8 \, {\left (a^{4} x^{4} + 2 \, a^{2} x^{2} + 1\right )} \arctan \left (a x\right )^{3} + 17 \, a x + 15 \, {\left (a^{4} x^{4} + 2 \, a^{2} x^{2} + 1\right )} \arctan \left (a x\right )\right )} a^{2}}{64 \, {\left (a^{7} c^{3} x^{4} + 2 \, a^{5} c^{3} x^{2} + a^{3} c^{3}\right )}} + \frac {{\left (3 \, a^{2} x^{2} - 3 \, {\left (a^{4} x^{4} + 2 \, a^{2} x^{2} + 1\right )} \arctan \left (a x\right )^{2} + 4\right )} a \arctan \left (a x\right )}{8 \, {\left (a^{6} c^{3} x^{4} + 2 \, a^{4} c^{3} x^{2} + a^{2} c^{3}\right )}} \] Input:

integrate(arctan(a*x)^2/(a^2*c*x^2+c)^3,x, algorithm="maxima")
 

Output:

1/8*((3*a^2*x^3 + 5*x)/(a^4*c^3*x^4 + 2*a^2*c^3*x^2 + c^3) + 3*arctan(a*x) 
/(a*c^3))*arctan(a*x)^2 - 1/64*(15*a^3*x^3 - 8*(a^4*x^4 + 2*a^2*x^2 + 1)*a 
rctan(a*x)^3 + 17*a*x + 15*(a^4*x^4 + 2*a^2*x^2 + 1)*arctan(a*x))*a^2/(a^7 
*c^3*x^4 + 2*a^5*c^3*x^2 + a^3*c^3) + 1/8*(3*a^2*x^2 - 3*(a^4*x^4 + 2*a^2* 
x^2 + 1)*arctan(a*x)^2 + 4)*a*arctan(a*x)/(a^6*c^3*x^4 + 2*a^4*c^3*x^2 + a 
^2*c^3)
 

Giac [F]

\[ \int \frac {\arctan (a x)^2}{\left (c+a^2 c x^2\right )^3} \, dx=\int { \frac {\arctan \left (a x\right )^{2}}{{\left (a^{2} c x^{2} + c\right )}^{3}} \,d x } \] Input:

integrate(arctan(a*x)^2/(a^2*c*x^2+c)^3,x, algorithm="giac")
 

Output:

integrate(arctan(a*x)^2/(a^2*c*x^2 + c)^3, x)
 

Mupad [B] (verification not implemented)

Time = 0.81 (sec) , antiderivative size = 157, normalized size of antiderivative = 0.93 \[ \int \frac {\arctan (a x)^2}{\left (c+a^2 c x^2\right )^3} \, dx=\frac {\mathrm {atan}\left (a\,x\right )\,\left (\frac {1}{2\,a^3\,c^3}+\frac {3\,x^2}{8\,a\,c^3}\right )}{\frac {1}{a^2}+2\,x^2+a^2\,x^4}-\frac {15\,\mathrm {atan}\left (a\,x\right )}{64\,a\,c^3}-\frac {\frac {15\,a^2\,x^3}{8}+\frac {17\,x}{8}}{8\,a^4\,c^3\,x^4+16\,a^2\,c^3\,x^2+8\,c^3}+\frac {{\mathrm {atan}\left (a\,x\right )}^2\,\left (\frac {3\,x^3}{8\,c^3}+\frac {5\,x}{8\,a^2\,c^3}\right )}{\frac {1}{a^2}+2\,x^2+a^2\,x^4}+\frac {{\mathrm {atan}\left (a\,x\right )}^3}{8\,a\,c^3} \] Input:

int(atan(a*x)^2/(c + a^2*c*x^2)^3,x)
 

Output:

(atan(a*x)*(1/(2*a^3*c^3) + (3*x^2)/(8*a*c^3)))/(1/a^2 + 2*x^2 + a^2*x^4) 
- (15*atan(a*x))/(64*a*c^3) - ((17*x)/8 + (15*a^2*x^3)/8)/(8*c^3 + 16*a^2* 
c^3*x^2 + 8*a^4*c^3*x^4) + (atan(a*x)^2*((3*x^3)/(8*c^3) + (5*x)/(8*a^2*c^ 
3)))/(1/a^2 + 2*x^2 + a^2*x^4) + atan(a*x)^3/(8*a*c^3)
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.77 \[ \int \frac {\arctan (a x)^2}{\left (c+a^2 c x^2\right )^3} \, dx=\frac {8 \mathit {atan} \left (a x \right )^{3} a^{4} x^{4}+16 \mathit {atan} \left (a x \right )^{3} a^{2} x^{2}+8 \mathit {atan} \left (a x \right )^{3}+24 \mathit {atan} \left (a x \right )^{2} a^{3} x^{3}+40 \mathit {atan} \left (a x \right )^{2} a x -15 \mathit {atan} \left (a x \right ) a^{4} x^{4}-6 \mathit {atan} \left (a x \right ) a^{2} x^{2}+17 \mathit {atan} \left (a x \right )-15 a^{3} x^{3}-17 a x}{64 a \,c^{3} \left (a^{4} x^{4}+2 a^{2} x^{2}+1\right )} \] Input:

int(atan(a*x)^2/(a^2*c*x^2+c)^3,x)
 

Output:

(8*atan(a*x)**3*a**4*x**4 + 16*atan(a*x)**3*a**2*x**2 + 8*atan(a*x)**3 + 2 
4*atan(a*x)**2*a**3*x**3 + 40*atan(a*x)**2*a*x - 15*atan(a*x)*a**4*x**4 - 
6*atan(a*x)*a**2*x**2 + 17*atan(a*x) - 15*a**3*x**3 - 17*a*x)/(64*a*c**3*( 
a**4*x**4 + 2*a**2*x**2 + 1))