\(\int x \cot ^{-1}(c-(1+i c) \cot (a+b x)) \, dx\) [32]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F(-2)]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 124 \[ \int x \cot ^{-1}(c-(1+i c) \cot (a+b x)) \, dx=\frac {b x^3}{6}+\frac {1}{2} x^2 \cot ^{-1}(c-(1+i c) \cot (a+b x))+\frac {1}{4} i x^2 \log \left (1+i c e^{2 i a+2 i b x}\right )+\frac {x \operatorname {PolyLog}\left (2,-i c e^{2 i a+2 i b x}\right )}{4 b}+\frac {i \operatorname {PolyLog}\left (3,-i c e^{2 i a+2 i b x}\right )}{8 b^2} \] Output:

1/6*b*x^3+1/2*x^2*(Pi-arccot(-c+(1+I*c)*cot(b*x+a)))+1/4*I*x^2*ln(1+I*c*ex 
p(2*I*a+2*I*b*x))+1/4*x*polylog(2,-I*c*exp(2*I*a+2*I*b*x))/b+1/8*I*polylog 
(3,-I*c*exp(2*I*a+2*I*b*x))/b^2
 

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.89 \[ \int x \cot ^{-1}(c-(1+i c) \cot (a+b x)) \, dx=\frac {1}{2} x^2 \cot ^{-1}(c+(-1-i c) \cot (a+b x))+\frac {i \left (2 b^2 x^2 \log \left (1-\frac {i e^{-2 i (a+b x)}}{c}\right )+2 i b x \operatorname {PolyLog}\left (2,\frac {i e^{-2 i (a+b x)}}{c}\right )+\operatorname {PolyLog}\left (3,\frac {i e^{-2 i (a+b x)}}{c}\right )\right )}{8 b^2} \] Input:

Integrate[x*ArcCot[c - (1 + I*c)*Cot[a + b*x]],x]
 

Output:

(x^2*ArcCot[c + (-1 - I*c)*Cot[a + b*x]])/2 + ((I/8)*(2*b^2*x^2*Log[1 - I/ 
(c*E^((2*I)*(a + b*x)))] + (2*I)*b*x*PolyLog[2, I/(c*E^((2*I)*(a + b*x)))] 
 + PolyLog[3, I/(c*E^((2*I)*(a + b*x)))]))/b^2
 

Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.26, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {5697, 2615, 2620, 3011, 2720, 7143}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x \cot ^{-1}(c-(1+i c) \cot (a+b x)) \, dx\)

\(\Big \downarrow \) 5697

\(\displaystyle \frac {1}{2} i b \int \frac {x^2}{i-c e^{2 i a+2 i b x}}dx+\frac {1}{2} x^2 \cot ^{-1}(c-(1+i c) \cot (a+b x))\)

\(\Big \downarrow \) 2615

\(\displaystyle \frac {1}{2} i b \left (-i c \int \frac {e^{2 i a+2 i b x} x^2}{i-c e^{2 i a+2 i b x}}dx-\frac {i x^3}{3}\right )+\frac {1}{2} x^2 \cot ^{-1}(c-(1+i c) \cot (a+b x))\)

\(\Big \downarrow \) 2620

\(\displaystyle \frac {1}{2} i b \left (-i c \left (\frac {i x^2 \log \left (1+i c e^{2 i a+2 i b x}\right )}{2 b c}-\frac {i \int x \log \left (i e^{2 i a+2 i b x} c+1\right )dx}{b c}\right )-\frac {i x^3}{3}\right )+\frac {1}{2} x^2 \cot ^{-1}(c-(1+i c) \cot (a+b x))\)

\(\Big \downarrow \) 3011

\(\displaystyle \frac {1}{2} i b \left (-i c \left (\frac {i x^2 \log \left (1+i c e^{2 i a+2 i b x}\right )}{2 b c}-\frac {i \left (\frac {i x \operatorname {PolyLog}\left (2,-i c e^{2 i a+2 i b x}\right )}{2 b}-\frac {i \int \operatorname {PolyLog}\left (2,-i c e^{2 i a+2 i b x}\right )dx}{2 b}\right )}{b c}\right )-\frac {i x^3}{3}\right )+\frac {1}{2} x^2 \cot ^{-1}(c-(1+i c) \cot (a+b x))\)

\(\Big \downarrow \) 2720

\(\displaystyle \frac {1}{2} i b \left (-i c \left (\frac {i x^2 \log \left (1+i c e^{2 i a+2 i b x}\right )}{2 b c}-\frac {i \left (\frac {i x \operatorname {PolyLog}\left (2,-i c e^{2 i a+2 i b x}\right )}{2 b}-\frac {\int e^{-2 i a-2 i b x} \operatorname {PolyLog}\left (2,-i c e^{2 i a+2 i b x}\right )de^{2 i a+2 i b x}}{4 b^2}\right )}{b c}\right )-\frac {i x^3}{3}\right )+\frac {1}{2} x^2 \cot ^{-1}(c-(1+i c) \cot (a+b x))\)

\(\Big \downarrow \) 7143

\(\displaystyle \frac {1}{2} i b \left (-i c \left (\frac {i x^2 \log \left (1+i c e^{2 i a+2 i b x}\right )}{2 b c}-\frac {i \left (\frac {i x \operatorname {PolyLog}\left (2,-i c e^{2 i a+2 i b x}\right )}{2 b}-\frac {\operatorname {PolyLog}\left (3,-i c e^{2 i a+2 i b x}\right )}{4 b^2}\right )}{b c}\right )-\frac {i x^3}{3}\right )+\frac {1}{2} x^2 \cot ^{-1}(c-(1+i c) \cot (a+b x))\)

Input:

Int[x*ArcCot[c - (1 + I*c)*Cot[a + b*x]],x]
 

Output:

(x^2*ArcCot[c - (1 + I*c)*Cot[a + b*x]])/2 + (I/2)*b*((-1/3*I)*x^3 - I*c*( 
((I/2)*x^2*Log[1 + I*c*E^((2*I)*a + (2*I)*b*x)])/(b*c) - (I*(((I/2)*x*Poly 
Log[2, (-I)*c*E^((2*I)*a + (2*I)*b*x)])/b - PolyLog[3, (-I)*c*E^((2*I)*a + 
 (2*I)*b*x)]/(4*b^2)))/(b*c)))
 

Defintions of rubi rules used

rule 2615
Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x 
_))))^(n_.)), x_Symbol] :> Simp[(c + d*x)^(m + 1)/(a*d*(m + 1)), x] - Simp[ 
b/a   Int[(c + d*x)^m*((F^(g*(e + f*x)))^n/(a + b*(F^(g*(e + f*x)))^n)), x] 
, x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2720
Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Simp[v/D[v, x] 
   Subst[Int[FunctionOfExponentialFunction[u, x]/x, x], x, v], x]] /; Funct 
ionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; FreeQ 
[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x)) 
*(F_)[v_] /; FreeQ[{a, b, c}, x] && InverseFunctionQ[F[x]]]
 

rule 3011
Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.) 
*(x_))^(m_.), x_Symbol] :> Simp[(-(f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + 
b*x)))^n]/(b*c*n*Log[F])), x] + Simp[g*(m/(b*c*n*Log[F]))   Int[(f + g*x)^( 
m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e 
, f, g, n}, x] && GtQ[m, 0]
 

rule 5697
Int[ArcCot[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_. 
), x_Symbol] :> Simp[(e + f*x)^(m + 1)*(ArcCot[c + d*Cot[a + b*x]]/(f*(m + 
1))), x] + Simp[I*(b/(f*(m + 1)))   Int[(e + f*x)^(m + 1)/(c - I*d - c*E^(2 
*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && E 
qQ[(c - I*d)^2, -1]
 

rule 7143
Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_S 
ymbol] :> Simp[PolyLog[n + 1, c*(a + b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d 
, e, n, p}, x] && EqQ[b*d, a*e]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 2.88 (sec) , antiderivative size = 1414, normalized size of antiderivative = 11.40

method result size
risch \(\text {Expression too large to display}\) \(1414\)

Input:

int(x*(Pi-arccot(-c+(I*c+1)*cot(b*x+a))),x,method=_RETURNVERBOSE)
 

Output:

1/2*I/b*ln(1+I*exp(2*I*(b*x+a))*c)*a*x+1/8*(Pi*csgn(I*exp(I*(b*x+a)))^2*cs 
gn(I*exp(2*I*(b*x+a)))-2*Pi*csgn(I*exp(I*(b*x+a)))*csgn(I*exp(2*I*(b*x+a)) 
)^2+Pi*csgn(I*exp(2*I*(b*x+a)))^3+Pi*csgn(I*exp(2*I*(b*x+a)))*csgn(I*(-I+c 
)/(exp(2*I*(b*x+a))-1))*csgn(I*exp(2*I*(b*x+a))*(-I+c)/(exp(2*I*(b*x+a))-1 
))-Pi*csgn(I*exp(2*I*(b*x+a)))*csgn(I*exp(2*I*(b*x+a))*(-I+c)/(exp(2*I*(b* 
x+a))-1))^2-Pi*csgn(I*(exp(2*I*(b*x+a))*c-I)/(exp(2*I*(b*x+a))-1))*csgn((e 
xp(2*I*(b*x+a))*c-I)/(exp(2*I*(b*x+a))-1))+Pi*csgn((exp(2*I*(b*x+a))*c-I)/ 
(exp(2*I*(b*x+a))-1))^2+Pi*csgn(I*(-I+c))*csgn(I/(exp(2*I*(b*x+a))-1))*csg 
n(I*(-I+c)/(exp(2*I*(b*x+a))-1))-Pi*csgn(I*(-I+c))*csgn(I*(-I+c)/(exp(2*I* 
(b*x+a))-1))^2+Pi*csgn(I*exp(2*I*(b*x+a))*(-I+c)/(exp(2*I*(b*x+a))-1))*csg 
n(exp(2*I*(b*x+a))*(-I+c)/(exp(2*I*(b*x+a))-1))+Pi*csgn(exp(2*I*(b*x+a))*( 
-I+c)/(exp(2*I*(b*x+a))-1))^2-Pi*csgn(I*(exp(2*I*(b*x+a))*c-I))*csgn(I/(ex 
p(2*I*(b*x+a))-1))*csgn(I*(exp(2*I*(b*x+a))*c-I)/(exp(2*I*(b*x+a))-1))+Pi* 
csgn(I*(exp(2*I*(b*x+a))*c-I))*csgn(I*(exp(2*I*(b*x+a))*c-I)/(exp(2*I*(b*x 
+a))-1))^2-Pi*csgn(I/(exp(2*I*(b*x+a))-1))*csgn(I*(-I+c)/(exp(2*I*(b*x+a)) 
-1))^2+Pi*csgn(I/(exp(2*I*(b*x+a))-1))*csgn(I*(exp(2*I*(b*x+a))*c-I)/(exp( 
2*I*(b*x+a))-1))^2+Pi*csgn(I*(-I+c)/(exp(2*I*(b*x+a))-1))^3-Pi*csgn(I*(-I+ 
c)/(exp(2*I*(b*x+a))-1))*csgn(I*exp(2*I*(b*x+a))*(-I+c)/(exp(2*I*(b*x+a))- 
1))^2-Pi*csgn(I*(exp(2*I*(b*x+a))*c-I)/(exp(2*I*(b*x+a))-1))^3+Pi*csgn(I*( 
exp(2*I*(b*x+a))*c-I)/(exp(2*I*(b*x+a))-1))*csgn((exp(2*I*(b*x+a))*c-I)...
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.23 \[ \int x \cot ^{-1}(c-(1+i c) \cot (a+b x)) \, dx=\frac {4 \, b^{3} x^{3} + 12 \, \pi b^{2} x^{2} + 6 i \, b^{2} x^{2} \log \left (\frac {{\left (c - i\right )} e^{\left (2 i \, b x + 2 i \, a\right )}}{c e^{\left (2 i \, b x + 2 i \, a\right )} - i}\right ) + 4 \, a^{3} + 6 \, b x {\rm Li}_2\left (-i \, c e^{\left (2 i \, b x + 2 i \, a\right )}\right ) + 6 i \, a^{2} \log \left (\frac {c e^{\left (2 i \, b x + 2 i \, a\right )} - i}{c}\right ) - 6 \, {\left (-i \, b^{2} x^{2} + i \, a^{2}\right )} \log \left (i \, c e^{\left (2 i \, b x + 2 i \, a\right )} + 1\right ) + 3 i \, {\rm polylog}\left (3, -i \, c e^{\left (2 i \, b x + 2 i \, a\right )}\right )}{24 \, b^{2}} \] Input:

integrate(x*(pi-arccot(-c+(1+I*c)*cot(b*x+a))),x, algorithm="fricas")
 

Output:

1/24*(4*b^3*x^3 + 12*pi*b^2*x^2 + 6*I*b^2*x^2*log((c - I)*e^(2*I*b*x + 2*I 
*a)/(c*e^(2*I*b*x + 2*I*a) - I)) + 4*a^3 + 6*b*x*dilog(-I*c*e^(2*I*b*x + 2 
*I*a)) + 6*I*a^2*log((c*e^(2*I*b*x + 2*I*a) - I)/c) - 6*(-I*b^2*x^2 + I*a^ 
2)*log(I*c*e^(2*I*b*x + 2*I*a) + 1) + 3*I*polylog(3, -I*c*e^(2*I*b*x + 2*I 
*a)))/b^2
 

Sympy [F(-2)]

Exception generated. \[ \int x \cot ^{-1}(c-(1+i c) \cot (a+b x)) \, dx=\text {Exception raised: CoercionFailed} \] Input:

integrate(x*(pi-acot(-c+(1+I*c)*cot(b*x+a))),x)
 

Output:

Exception raised: CoercionFailed >> Cannot convert 2*_t0**2*c*exp(2*I*a) - 
 _t0**2*I*exp(2*I*a) - I of type <class 'sympy.core.add.Add'> to QQ_I[x,b, 
c,_t0,exp(I*a)]
 

Maxima [F(-2)]

Exception generated. \[ \int x \cot ^{-1}(c-(1+i c) \cot (a+b x)) \, dx=\text {Exception raised: ValueError} \] Input:

integrate(x*(pi-arccot(-c+(1+I*c)*cot(b*x+a))),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(c-1>0)', see `assume?` for more 
details)Is
 

Giac [F]

\[ \int x \cot ^{-1}(c-(1+i c) \cot (a+b x)) \, dx=\int { {\left (\pi - \operatorname {arccot}\left ({\left (i \, c + 1\right )} \cot \left (b x + a\right ) - c\right )\right )} x \,d x } \] Input:

integrate(x*(pi-arccot(-c+(1+I*c)*cot(b*x+a))),x, algorithm="giac")
 

Output:

integrate((pi - arccot((I*c + 1)*cot(b*x + a) - c))*x, x)
 

Mupad [F(-1)]

Timed out. \[ \int x \cot ^{-1}(c-(1+i c) \cot (a+b x)) \, dx=\int x\,\left (\Pi +\mathrm {acot}\left (c-\mathrm {cot}\left (a+b\,x\right )\,\left (1+c\,1{}\mathrm {i}\right )\right )\right ) \,d x \] Input:

int(x*(Pi + acot(c - cot(a + b*x)*(c*1i + 1))),x)
 

Output:

int(x*(Pi + acot(c - cot(a + b*x)*(c*1i + 1))), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int x \cot ^{-1}(c-(1+i c) \cot (a+b x)) \, dx=-\left (\int \mathit {acot} \left (\cot \left (b x +a \right ) c i +\cot \left (b x +a \right )-c \right ) x d x \right )+\frac {\pi \,x^{2}}{2} \] Input:

int(x*(Pi-acot(-c+(1+I*c)*cot(b*x+a))),x)
 

Output:

( - 2*int(acot(cot(a + b*x)*c*i + cot(a + b*x) - c)*x,x) + pi*x**2)/2