\(\int \frac {\cot ^{-1}(a x^2)}{x^4} \, dx\) [47]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 10, antiderivative size = 117 \[ \int \frac {\cot ^{-1}\left (a x^2\right )}{x^4} \, dx=\frac {2 a}{3 x}-\frac {\cot ^{-1}\left (a x^2\right )}{3 x^3}-\frac {a^{3/2} \arctan \left (1-\sqrt {2} \sqrt {a} x\right )}{3 \sqrt {2}}+\frac {a^{3/2} \arctan \left (1+\sqrt {2} \sqrt {a} x\right )}{3 \sqrt {2}}-\frac {a^{3/2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {a} x}{1+a x^2}\right )}{3 \sqrt {2}} \] Output:

2/3*a/x-1/3*arccot(a*x^2)/x^3+1/6*a^(3/2)*arctan(-1+2^(1/2)*a^(1/2)*x)*2^( 
1/2)+1/6*a^(3/2)*arctan(1+2^(1/2)*a^(1/2)*x)*2^(1/2)-1/6*a^(3/2)*arctanh(2 
^(1/2)*a^(1/2)*x/(a*x^2+1))*2^(1/2)
 

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.25 \[ \int \frac {\cot ^{-1}\left (a x^2\right )}{x^4} \, dx=\frac {-4 \cot ^{-1}\left (a x^2\right )+a x^2 \left (8-2 \sqrt {2} \sqrt {a} x \arctan \left (1-\sqrt {2} \sqrt {a} x\right )+2 \sqrt {2} \sqrt {a} x \arctan \left (1+\sqrt {2} \sqrt {a} x\right )+\sqrt {2} \sqrt {a} x \log \left (1-\sqrt {2} \sqrt {a} x+a x^2\right )-\sqrt {2} \sqrt {a} x \log \left (1+\sqrt {2} \sqrt {a} x+a x^2\right )\right )}{12 x^3} \] Input:

Integrate[ArcCot[a*x^2]/x^4,x]
 

Output:

(-4*ArcCot[a*x^2] + a*x^2*(8 - 2*Sqrt[2]*Sqrt[a]*x*ArcTan[1 - Sqrt[2]*Sqrt 
[a]*x] + 2*Sqrt[2]*Sqrt[a]*x*ArcTan[1 + Sqrt[2]*Sqrt[a]*x] + Sqrt[2]*Sqrt[ 
a]*x*Log[1 - Sqrt[2]*Sqrt[a]*x + a*x^2] - Sqrt[2]*Sqrt[a]*x*Log[1 + Sqrt[2 
]*Sqrt[a]*x + a*x^2]))/(12*x^3)
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.45, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.000, Rules used = {5362, 847, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^{-1}\left (a x^2\right )}{x^4} \, dx\)

\(\Big \downarrow \) 5362

\(\displaystyle -\frac {2}{3} a \int \frac {1}{x^2 \left (a^2 x^4+1\right )}dx-\frac {\cot ^{-1}\left (a x^2\right )}{3 x^3}\)

\(\Big \downarrow \) 847

\(\displaystyle -\frac {2}{3} a \left (a^2 \left (-\int \frac {x^2}{a^2 x^4+1}dx\right )-\frac {1}{x}\right )-\frac {\cot ^{-1}\left (a x^2\right )}{3 x^3}\)

\(\Big \downarrow \) 826

\(\displaystyle -\frac {2}{3} a \left (-\left (a^2 \left (\frac {\int \frac {a x^2+1}{a^2 x^4+1}dx}{2 a}-\frac {\int \frac {1-a x^2}{a^2 x^4+1}dx}{2 a}\right )\right )-\frac {1}{x}\right )-\frac {\cot ^{-1}\left (a x^2\right )}{3 x^3}\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {2}{3} a \left (-\left (a^2 \left (\frac {\frac {\int \frac {1}{x^2-\frac {\sqrt {2} x}{\sqrt {a}}+\frac {1}{a}}dx}{2 a}+\frac {\int \frac {1}{x^2+\frac {\sqrt {2} x}{\sqrt {a}}+\frac {1}{a}}dx}{2 a}}{2 a}-\frac {\int \frac {1-a x^2}{a^2 x^4+1}dx}{2 a}\right )\right )-\frac {1}{x}\right )-\frac {\cot ^{-1}\left (a x^2\right )}{3 x^3}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {2}{3} a \left (-\left (a^2 \left (\frac {\frac {\int \frac {1}{-\left (1-\sqrt {2} \sqrt {a} x\right )^2-1}d\left (1-\sqrt {2} \sqrt {a} x\right )}{\sqrt {2} \sqrt {a}}-\frac {\int \frac {1}{-\left (\sqrt {2} \sqrt {a} x+1\right )^2-1}d\left (\sqrt {2} \sqrt {a} x+1\right )}{\sqrt {2} \sqrt {a}}}{2 a}-\frac {\int \frac {1-a x^2}{a^2 x^4+1}dx}{2 a}\right )\right )-\frac {1}{x}\right )-\frac {\cot ^{-1}\left (a x^2\right )}{3 x^3}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {2}{3} a \left (-\left (a^2 \left (\frac {\frac {\arctan \left (\sqrt {2} \sqrt {a} x+1\right )}{\sqrt {2} \sqrt {a}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {a} x\right )}{\sqrt {2} \sqrt {a}}}{2 a}-\frac {\int \frac {1-a x^2}{a^2 x^4+1}dx}{2 a}\right )\right )-\frac {1}{x}\right )-\frac {\cot ^{-1}\left (a x^2\right )}{3 x^3}\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {2}{3} a \left (-\left (a^2 \left (\frac {\frac {\arctan \left (\sqrt {2} \sqrt {a} x+1\right )}{\sqrt {2} \sqrt {a}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {a} x\right )}{\sqrt {2} \sqrt {a}}}{2 a}-\frac {-\frac {\int -\frac {\sqrt {2}-2 \sqrt {a} x}{\sqrt {a} \left (x^2-\frac {\sqrt {2} x}{\sqrt {a}}+\frac {1}{a}\right )}dx}{2 \sqrt {2} \sqrt {a}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {a} x+1\right )}{\sqrt {a} \left (x^2+\frac {\sqrt {2} x}{\sqrt {a}}+\frac {1}{a}\right )}dx}{2 \sqrt {2} \sqrt {a}}}{2 a}\right )\right )-\frac {1}{x}\right )-\frac {\cot ^{-1}\left (a x^2\right )}{3 x^3}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2}{3} a \left (-\left (a^2 \left (\frac {\frac {\arctan \left (\sqrt {2} \sqrt {a} x+1\right )}{\sqrt {2} \sqrt {a}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {a} x\right )}{\sqrt {2} \sqrt {a}}}{2 a}-\frac {\frac {\int \frac {\sqrt {2}-2 \sqrt {a} x}{\sqrt {a} \left (x^2-\frac {\sqrt {2} x}{\sqrt {a}}+\frac {1}{a}\right )}dx}{2 \sqrt {2} \sqrt {a}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {a} x+1\right )}{\sqrt {a} \left (x^2+\frac {\sqrt {2} x}{\sqrt {a}}+\frac {1}{a}\right )}dx}{2 \sqrt {2} \sqrt {a}}}{2 a}\right )\right )-\frac {1}{x}\right )-\frac {\cot ^{-1}\left (a x^2\right )}{3 x^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2}{3} a \left (-\left (a^2 \left (\frac {\frac {\arctan \left (\sqrt {2} \sqrt {a} x+1\right )}{\sqrt {2} \sqrt {a}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {a} x\right )}{\sqrt {2} \sqrt {a}}}{2 a}-\frac {\frac {\int \frac {\sqrt {2}-2 \sqrt {a} x}{x^2-\frac {\sqrt {2} x}{\sqrt {a}}+\frac {1}{a}}dx}{2 \sqrt {2} a}+\frac {\int \frac {\sqrt {2} \sqrt {a} x+1}{x^2+\frac {\sqrt {2} x}{\sqrt {a}}+\frac {1}{a}}dx}{2 a}}{2 a}\right )\right )-\frac {1}{x}\right )-\frac {\cot ^{-1}\left (a x^2\right )}{3 x^3}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {2}{3} a \left (-\left (a^2 \left (\frac {\frac {\arctan \left (\sqrt {2} \sqrt {a} x+1\right )}{\sqrt {2} \sqrt {a}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {a} x\right )}{\sqrt {2} \sqrt {a}}}{2 a}-\frac {\frac {\log \left (a x^2+\sqrt {2} \sqrt {a} x+1\right )}{2 \sqrt {2} \sqrt {a}}-\frac {\log \left (a x^2-\sqrt {2} \sqrt {a} x+1\right )}{2 \sqrt {2} \sqrt {a}}}{2 a}\right )\right )-\frac {1}{x}\right )-\frac {\cot ^{-1}\left (a x^2\right )}{3 x^3}\)

Input:

Int[ArcCot[a*x^2]/x^4,x]
 

Output:

-1/3*ArcCot[a*x^2]/x^3 - (2*a*(-x^(-1) - a^2*((-(ArcTan[1 - Sqrt[2]*Sqrt[a 
]*x]/(Sqrt[2]*Sqrt[a])) + ArcTan[1 + Sqrt[2]*Sqrt[a]*x]/(Sqrt[2]*Sqrt[a])) 
/(2*a) - (-1/2*Log[1 - Sqrt[2]*Sqrt[a]*x + a*x^2]/(Sqrt[2]*Sqrt[a]) + Log[ 
1 + Sqrt[2]*Sqrt[a]*x + a*x^2]/(2*Sqrt[2]*Sqrt[a]))/(2*a))))/3
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 847
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x 
)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + n*(p + 1) 
+ 1)/(a*c^n*(m + 1)))   Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a 
, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 5362
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> 
 Simp[x^(m + 1)*((a + b*ArcCot[c*x^n])^p/(m + 1)), x] + Simp[b*c*n*(p/(m + 
1))   Int[x^(m + n)*((a + b*ArcCot[c*x^n])^(p - 1)/(1 + c^2*x^(2*n))), x], 
x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] & 
& IntegerQ[m])) && NeQ[m, -1]
 
Maple [A] (verified)

Time = 0.45 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.91

method result size
default \(-\frac {\operatorname {arccot}\left (a \,x^{2}\right )}{3 x^{3}}-\frac {2 a \left (-\frac {\sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {1}{a^{2}}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {1}{a^{2}}}}{x^{2}+\left (\frac {1}{a^{2}}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {1}{a^{2}}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {1}{a^{2}}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {1}{a^{2}}\right )^{\frac {1}{4}}}-1\right )\right )}{8 \left (\frac {1}{a^{2}}\right )^{\frac {1}{4}}}-\frac {1}{x}\right )}{3}\) \(106\)
parts \(-\frac {\operatorname {arccot}\left (a \,x^{2}\right )}{3 x^{3}}-\frac {2 a \left (-\frac {\sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {1}{a^{2}}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {1}{a^{2}}}}{x^{2}+\left (\frac {1}{a^{2}}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {1}{a^{2}}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {1}{a^{2}}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {1}{a^{2}}\right )^{\frac {1}{4}}}-1\right )\right )}{8 \left (\frac {1}{a^{2}}\right )^{\frac {1}{4}}}-\frac {1}{x}\right )}{3}\) \(106\)

Input:

int(arccot(a*x^2)/x^4,x,method=_RETURNVERBOSE)
 

Output:

-1/3*arccot(a*x^2)/x^3-2/3*a*(-1/8/(1/a^2)^(1/4)*2^(1/2)*(ln((x^2-(1/a^2)^ 
(1/4)*x*2^(1/2)+(1/a^2)^(1/2))/(x^2+(1/a^2)^(1/4)*x*2^(1/2)+(1/a^2)^(1/2)) 
)+2*arctan(2^(1/2)/(1/a^2)^(1/4)*x+1)+2*arctan(2^(1/2)/(1/a^2)^(1/4)*x-1)) 
-1/x)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.01 \[ \int \frac {\cot ^{-1}\left (a x^2\right )}{x^4} \, dx=\frac {2 \, \sqrt {2} a^{\frac {3}{2}} x^{3} \arctan \left (\sqrt {2} \sqrt {a} x + 1\right ) + 2 \, \sqrt {2} a^{\frac {3}{2}} x^{3} \arctan \left (\sqrt {2} \sqrt {a} x - 1\right ) - \sqrt {2} a^{\frac {3}{2}} x^{3} \log \left (a x^{2} + \sqrt {2} \sqrt {a} x + 1\right ) + \sqrt {2} a^{\frac {3}{2}} x^{3} \log \left (a x^{2} - \sqrt {2} \sqrt {a} x + 1\right ) + 8 \, a x^{2} - 4 \, \operatorname {arccot}\left (a x^{2}\right )}{12 \, x^{3}} \] Input:

integrate(arccot(a*x^2)/x^4,x, algorithm="fricas")
 

Output:

1/12*(2*sqrt(2)*a^(3/2)*x^3*arctan(sqrt(2)*sqrt(a)*x + 1) + 2*sqrt(2)*a^(3 
/2)*x^3*arctan(sqrt(2)*sqrt(a)*x - 1) - sqrt(2)*a^(3/2)*x^3*log(a*x^2 + sq 
rt(2)*sqrt(a)*x + 1) + sqrt(2)*a^(3/2)*x^3*log(a*x^2 - sqrt(2)*sqrt(a)*x + 
 1) + 8*a*x^2 - 4*arccot(a*x^2))/x^3
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 15.16 (sec) , antiderivative size = 459, normalized size of antiderivative = 3.92 \[ \int \frac {\cot ^{-1}\left (a x^2\right )}{x^4} \, dx=\begin {cases} - \frac {\pi }{6 x^{3}} & \text {for}\: a = 0 \\- \frac {\infty i}{x^{3}} & \text {for}\: a = - \frac {i}{x^{2}} \\\frac {\infty i}{x^{3}} & \text {for}\: a = \frac {i}{x^{2}} \\- \frac {2 a^{3} x^{7} \left (- \frac {1}{a^{2}}\right )^{\frac {3}{4}} \log {\left (x - \sqrt [4]{- \frac {1}{a^{2}}} \right )}}{6 x^{7} + \frac {6 x^{3}}{a^{2}}} + \frac {a^{3} x^{7} \left (- \frac {1}{a^{2}}\right )^{\frac {3}{4}} \log {\left (x^{2} + \sqrt {- \frac {1}{a^{2}}} \right )}}{6 x^{7} + \frac {6 x^{3}}{a^{2}}} - \frac {2 a^{3} x^{7} \left (- \frac {1}{a^{2}}\right )^{\frac {3}{4}} \operatorname {atan}{\left (\frac {x}{\sqrt [4]{- \frac {1}{a^{2}}}} \right )}}{6 x^{7} + \frac {6 x^{3}}{a^{2}}} + \frac {2 a^{2} x^{7} \sqrt [4]{- \frac {1}{a^{2}}} \operatorname {acot}{\left (a x^{2} \right )}}{6 x^{7} + \frac {6 x^{3}}{a^{2}}} + \frac {4 a x^{6}}{6 x^{7} + \frac {6 x^{3}}{a^{2}}} - \frac {2 a x^{3} \left (- \frac {1}{a^{2}}\right )^{\frac {3}{4}} \log {\left (x - \sqrt [4]{- \frac {1}{a^{2}}} \right )}}{6 x^{7} + \frac {6 x^{3}}{a^{2}}} + \frac {a x^{3} \left (- \frac {1}{a^{2}}\right )^{\frac {3}{4}} \log {\left (x^{2} + \sqrt {- \frac {1}{a^{2}}} \right )}}{6 x^{7} + \frac {6 x^{3}}{a^{2}}} - \frac {2 a x^{3} \left (- \frac {1}{a^{2}}\right )^{\frac {3}{4}} \operatorname {atan}{\left (\frac {x}{\sqrt [4]{- \frac {1}{a^{2}}}} \right )}}{6 x^{7} + \frac {6 x^{3}}{a^{2}}} - \frac {2 x^{4} \operatorname {acot}{\left (a x^{2} \right )}}{6 x^{7} + \frac {6 x^{3}}{a^{2}}} + \frac {2 x^{3} \sqrt [4]{- \frac {1}{a^{2}}} \operatorname {acot}{\left (a x^{2} \right )}}{6 x^{7} + \frac {6 x^{3}}{a^{2}}} + \frac {4 x^{2}}{6 a x^{7} + \frac {6 x^{3}}{a}} - \frac {2 \operatorname {acot}{\left (a x^{2} \right )}}{6 a^{2} x^{7} + 6 x^{3}} & \text {otherwise} \end {cases} \] Input:

integrate(acot(a*x**2)/x**4,x)
 

Output:

Piecewise((-pi/(6*x**3), Eq(a, 0)), (-oo*I/x**3, Eq(a, -I/x**2)), (oo*I/x* 
*3, Eq(a, I/x**2)), (-2*a**3*x**7*(-1/a**2)**(3/4)*log(x - (-1/a**2)**(1/4 
))/(6*x**7 + 6*x**3/a**2) + a**3*x**7*(-1/a**2)**(3/4)*log(x**2 + sqrt(-1/ 
a**2))/(6*x**7 + 6*x**3/a**2) - 2*a**3*x**7*(-1/a**2)**(3/4)*atan(x/(-1/a* 
*2)**(1/4))/(6*x**7 + 6*x**3/a**2) + 2*a**2*x**7*(-1/a**2)**(1/4)*acot(a*x 
**2)/(6*x**7 + 6*x**3/a**2) + 4*a*x**6/(6*x**7 + 6*x**3/a**2) - 2*a*x**3*( 
-1/a**2)**(3/4)*log(x - (-1/a**2)**(1/4))/(6*x**7 + 6*x**3/a**2) + a*x**3* 
(-1/a**2)**(3/4)*log(x**2 + sqrt(-1/a**2))/(6*x**7 + 6*x**3/a**2) - 2*a*x* 
*3*(-1/a**2)**(3/4)*atan(x/(-1/a**2)**(1/4))/(6*x**7 + 6*x**3/a**2) - 2*x* 
*4*acot(a*x**2)/(6*x**7 + 6*x**3/a**2) + 2*x**3*(-1/a**2)**(1/4)*acot(a*x* 
*2)/(6*x**7 + 6*x**3/a**2) + 4*x**2/(6*a*x**7 + 6*x**3/a) - 2*acot(a*x**2) 
/(6*a**2*x**7 + 6*x**3), True))
 

Maxima [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.14 \[ \int \frac {\cot ^{-1}\left (a x^2\right )}{x^4} \, dx=\frac {1}{12} \, {\left (a^{2} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, a x + \sqrt {2} \sqrt {a}\right )}}{2 \, \sqrt {a}}\right )}{a^{\frac {3}{2}}} + \frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, a x - \sqrt {2} \sqrt {a}\right )}}{2 \, \sqrt {a}}\right )}{a^{\frac {3}{2}}} - \frac {\sqrt {2} \log \left (a x^{2} + \sqrt {2} \sqrt {a} x + 1\right )}{a^{\frac {3}{2}}} + \frac {\sqrt {2} \log \left (a x^{2} - \sqrt {2} \sqrt {a} x + 1\right )}{a^{\frac {3}{2}}}\right )} + \frac {8}{x}\right )} a - \frac {\operatorname {arccot}\left (a x^{2}\right )}{3 \, x^{3}} \] Input:

integrate(arccot(a*x^2)/x^4,x, algorithm="maxima")
 

Output:

1/12*(a^2*(2*sqrt(2)*arctan(1/2*sqrt(2)*(2*a*x + sqrt(2)*sqrt(a))/sqrt(a)) 
/a^(3/2) + 2*sqrt(2)*arctan(1/2*sqrt(2)*(2*a*x - sqrt(2)*sqrt(a))/sqrt(a)) 
/a^(3/2) - sqrt(2)*log(a*x^2 + sqrt(2)*sqrt(a)*x + 1)/a^(3/2) + sqrt(2)*lo 
g(a*x^2 - sqrt(2)*sqrt(a)*x + 1)/a^(3/2)) + 8/x)*a - 1/3*arccot(a*x^2)/x^3
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.27 \[ \int \frac {\cot ^{-1}\left (a x^2\right )}{x^4} \, dx=\frac {1}{12} \, {\left (\frac {2 \, \sqrt {2} a^{2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (2 \, x + \frac {\sqrt {2}}{\sqrt {{\left | a \right |}}}\right )} \sqrt {{\left | a \right |}}\right )}{{\left | a \right |}^{\frac {3}{2}}} + \frac {2 \, \sqrt {2} a^{2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (2 \, x - \frac {\sqrt {2}}{\sqrt {{\left | a \right |}}}\right )} \sqrt {{\left | a \right |}}\right )}{{\left | a \right |}^{\frac {3}{2}}} - \sqrt {2} \sqrt {{\left | a \right |}} \log \left (x^{2} + \frac {\sqrt {2} x}{\sqrt {{\left | a \right |}}} + \frac {1}{{\left | a \right |}}\right ) + \frac {\sqrt {2} a^{2} \log \left (x^{2} - \frac {\sqrt {2} x}{\sqrt {{\left | a \right |}}} + \frac {1}{{\left | a \right |}}\right )}{{\left | a \right |}^{\frac {3}{2}}} + \frac {8}{x}\right )} a - \frac {\arctan \left (\frac {1}{a x^{2}}\right )}{3 \, x^{3}} \] Input:

integrate(arccot(a*x^2)/x^4,x, algorithm="giac")
 

Output:

1/12*(2*sqrt(2)*a^2*arctan(1/2*sqrt(2)*(2*x + sqrt(2)/sqrt(abs(a)))*sqrt(a 
bs(a)))/abs(a)^(3/2) + 2*sqrt(2)*a^2*arctan(1/2*sqrt(2)*(2*x - sqrt(2)/sqr 
t(abs(a)))*sqrt(abs(a)))/abs(a)^(3/2) - sqrt(2)*sqrt(abs(a))*log(x^2 + sqr 
t(2)*x/sqrt(abs(a)) + 1/abs(a)) + sqrt(2)*a^2*log(x^2 - sqrt(2)*x/sqrt(abs 
(a)) + 1/abs(a))/abs(a)^(3/2) + 8/x)*a - 1/3*arctan(1/(a*x^2))/x^3
                                                                                    
                                                                                    
 

Mupad [B] (verification not implemented)

Time = 0.89 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.44 \[ \int \frac {\cot ^{-1}\left (a x^2\right )}{x^4} \, dx=\frac {2\,a}{3\,x}-\frac {\mathrm {acot}\left (a\,x^2\right )}{3\,x^3}+\frac {{\left (-1\right )}^{1/4}\,a^{3/2}\,\mathrm {atan}\left ({\left (-1\right )}^{1/4}\,\sqrt {a}\,x\right )}{3}+\frac {{\left (-1\right )}^{1/4}\,a^{3/2}\,\mathrm {atan}\left ({\left (-1\right )}^{1/4}\,\sqrt {a}\,x\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{3} \] Input:

int(acot(a*x^2)/x^4,x)
 

Output:

(2*a)/(3*x) - acot(a*x^2)/(3*x^3) + ((-1)^(1/4)*a^(3/2)*atan((-1)^(1/4)*a^ 
(1/2)*x))/3 + ((-1)^(1/4)*a^(3/2)*atan((-1)^(1/4)*a^(1/2)*x*1i)*1i)/3
 

Reduce [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 114, normalized size of antiderivative = 0.97 \[ \int \frac {\cot ^{-1}\left (a x^2\right )}{x^4} \, dx=\frac {2 \sqrt {a}\, \sqrt {2}\, \mathit {acot} \left (a \,x^{2}\right ) a \,x^{3}-4 \mathit {acot} \left (a \,x^{2}\right )-4 \sqrt {a}\, \sqrt {2}\, \mathit {atan} \left (\frac {\sqrt {a}\, \sqrt {2}-2 a x}{\sqrt {a}\, \sqrt {2}}\right ) a \,x^{3}+\sqrt {a}\, \sqrt {2}\, \mathrm {log}\left (-\sqrt {a}\, \sqrt {2}\, x +a \,x^{2}+1\right ) a \,x^{3}-\sqrt {a}\, \sqrt {2}\, \mathrm {log}\left (\sqrt {a}\, \sqrt {2}\, x +a \,x^{2}+1\right ) a \,x^{3}+8 a \,x^{2}}{12 x^{3}} \] Input:

int(acot(a*x^2)/x^4,x)
 

Output:

(2*sqrt(a)*sqrt(2)*acot(a*x**2)*a*x**3 - 4*acot(a*x**2) - 4*sqrt(a)*sqrt(2 
)*atan((sqrt(a)*sqrt(2) - 2*a*x)/(sqrt(a)*sqrt(2)))*a*x**3 + sqrt(a)*sqrt( 
2)*log( - sqrt(a)*sqrt(2)*x + a*x**2 + 1)*a*x**3 - sqrt(a)*sqrt(2)*log(sqr 
t(a)*sqrt(2)*x + a*x**2 + 1)*a*x**3 + 8*a*x**2)/(12*x**3)