\(\int \frac {x^2 (a+b \sec ^{-1}(c x))}{(d+e x^2)^2} \, dx\) [101]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F]
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 745 \[ \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\frac {a+b \sec ^{-1}(c x)}{4 e \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}-\frac {a+b \sec ^{-1}(c x)}{4 e \left (\sqrt {-d} \sqrt {e}+\frac {d}{x}\right )}+\frac {b \text {arctanh}\left (\frac {c^2 d-\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {c^2 d+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{4 \sqrt {d} e \sqrt {c^2 d+e}}+\frac {b \text {arctanh}\left (\frac {c^2 d+\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {c^2 d+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{4 \sqrt {d} e \sqrt {c^2 d+e}}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 \sqrt {-d} e^{3/2}}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 \sqrt {-d} e^{3/2}}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 \sqrt {-d} e^{3/2}}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 \sqrt {-d} e^{3/2}}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 \sqrt {-d} e^{3/2}}-\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 \sqrt {-d} e^{3/2}}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 \sqrt {-d} e^{3/2}}-\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 \sqrt {-d} e^{3/2}} \] Output:

1/4*(a+b*arcsec(c*x))/e/((-d)^(1/2)*e^(1/2)-d/x)-1/4*(a+b*arcsec(c*x))/e/( 
(-d)^(1/2)*e^(1/2)+d/x)+1/4*b*arctanh((c^2*d-(-d)^(1/2)*e^(1/2)/x)/c/d^(1/ 
2)/(c^2*d+e)^(1/2)/(1-1/c^2/x^2)^(1/2))/d^(1/2)/e/(c^2*d+e)^(1/2)+1/4*b*ar 
ctanh((c^2*d+(-d)^(1/2)*e^(1/2)/x)/c/d^(1/2)/(c^2*d+e)^(1/2)/(1-1/c^2/x^2) 
^(1/2))/d^(1/2)/e/(c^2*d+e)^(1/2)+1/4*(a+b*arcsec(c*x))*ln(1-c*(-d)^(1/2)* 
(1/c/x+I*(1-1/c^2/x^2)^(1/2))/(e^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(3/2 
)-1/4*(a+b*arcsec(c*x))*ln(1+c*(-d)^(1/2)*(1/c/x+I*(1-1/c^2/x^2)^(1/2))/(e 
^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(3/2)+1/4*(a+b*arcsec(c*x))*ln(1-c*( 
-d)^(1/2)*(1/c/x+I*(1-1/c^2/x^2)^(1/2))/(e^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(1 
/2)/e^(3/2)-1/4*(a+b*arcsec(c*x))*ln(1+c*(-d)^(1/2)*(1/c/x+I*(1-1/c^2/x^2) 
^(1/2))/(e^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(3/2)+1/4*I*b*polylog(2,-c 
*(-d)^(1/2)*(1/c/x+I*(1-1/c^2/x^2)^(1/2))/(e^(1/2)-(c^2*d+e)^(1/2)))/(-d)^ 
(1/2)/e^(3/2)-1/4*I*b*polylog(2,c*(-d)^(1/2)*(1/c/x+I*(1-1/c^2/x^2)^(1/2)) 
/(e^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(3/2)+1/4*I*b*polylog(2,-c*(-d)^( 
1/2)*(1/c/x+I*(1-1/c^2/x^2)^(1/2))/(e^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(1/2)/e 
^(3/2)-1/4*I*b*polylog(2,c*(-d)^(1/2)*(1/c/x+I*(1-1/c^2/x^2)^(1/2))/(e^(1/ 
2)+(c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(3/2)
 

Mathematica [A] (warning: unable to verify)

Time = 1.12 (sec) , antiderivative size = 1245, normalized size of antiderivative = 1.67 \[ \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx =\text {Too large to display} \] Input:

Integrate[(x^2*(a + b*ArcSec[c*x]))/(d + e*x^2)^2,x]
 

Output:

((-2*a*Sqrt[e]*x)/(d + e*x^2) + (2*a*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/Sqrt[d] 
+ b*(ArcSec[c*x]/(I*Sqrt[d] - Sqrt[e]*x) - ArcSec[c*x]/(I*Sqrt[d] + Sqrt[e 
]*x) - (4*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[(((-I)* 
c*Sqrt[d] + Sqrt[e])*Tan[ArcSec[c*x]/2])/Sqrt[c^2*d + e]])/Sqrt[d] + (4*Ar 
cSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[((I*c*Sqrt[d] + Sqr 
t[e])*Tan[ArcSec[c*x]/2])/Sqrt[c^2*d + e]])/Sqrt[d] - (I*ArcSec[c*x]*Log[1 
 + (I*(Sqrt[e] - Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])])/Sqrt[d] 
 - ((2*I)*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(Sq 
rt[e] - Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])])/Sqrt[d] + (I*Arc 
Sec[c*x]*Log[1 + (I*(-Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqr 
t[d])])/Sqrt[d] + ((2*I)*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]] 
*Log[1 + (I*(-Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])])/ 
Sqrt[d] + (I*ArcSec[c*x]*Log[1 - (I*(Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSe 
c[c*x]))/(c*Sqrt[d])])/Sqrt[d] - ((2*I)*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqr 
t[d])]/Sqrt[2]]*Log[1 - (I*(Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/ 
(c*Sqrt[d])])/Sqrt[d] - (I*ArcSec[c*x]*Log[1 + (I*(Sqrt[e] + Sqrt[c^2*d + 
e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])])/Sqrt[d] + ((2*I)*ArcSin[Sqrt[1 + (I*S 
qrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] + Sqrt[c^2*d + e])*E^(I* 
ArcSec[c*x]))/(c*Sqrt[d])])/Sqrt[d] - (I*Sqrt[e]*Log[(2*Sqrt[d]*Sqrt[e]*(S 
qrt[e] + c*(I*c*Sqrt[d] - Sqrt[-(c^2*d) - e]*Sqrt[1 - 1/(c^2*x^2)])*x))...
 

Rubi [A] (verified)

Time = 1.76 (sec) , antiderivative size = 801, normalized size of antiderivative = 1.08, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {5763, 5173, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 5763

\(\displaystyle -\int \frac {a+b \arccos \left (\frac {1}{c x}\right )}{\left (\frac {d}{x^2}+e\right )^2}d\frac {1}{x}\)

\(\Big \downarrow \) 5173

\(\displaystyle -\int \left (-\frac {d \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{2 e \left (-\frac {d^2}{x^2}-e d\right )}-\frac {d \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{4 e \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )^2}-\frac {d \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{4 e \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )^2}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\log \left (1-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right ) \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{4 \sqrt {-d} e^{3/2}}-\frac {\log \left (\frac {\sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )} c}{\sqrt {e}-\sqrt {d c^2+e}}+1\right ) \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{4 \sqrt {-d} e^{3/2}}+\frac {\log \left (1-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right ) \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{4 \sqrt {-d} e^{3/2}}-\frac {\log \left (\frac {\sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )} c}{\sqrt {e}+\sqrt {d c^2+e}}+1\right ) \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{4 \sqrt {-d} e^{3/2}}+\frac {a+b \arccos \left (\frac {1}{c x}\right )}{4 e \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}-\frac {a+b \arccos \left (\frac {1}{c x}\right )}{4 e \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )}+\frac {b \text {arctanh}\left (\frac {c^2 d-\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {d c^2+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{4 \sqrt {d} e \sqrt {d c^2+e}}+\frac {b \text {arctanh}\left (\frac {d c^2+\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {d c^2+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{4 \sqrt {d} e \sqrt {d c^2+e}}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{4 \sqrt {-d} e^{3/2}}-\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{4 \sqrt {-d} e^{3/2}}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{4 \sqrt {-d} e^{3/2}}-\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{4 \sqrt {-d} e^{3/2}}\)

Input:

Int[(x^2*(a + b*ArcSec[c*x]))/(d + e*x^2)^2,x]
 

Output:

(a + b*ArcCos[1/(c*x)])/(4*e*(Sqrt[-d]*Sqrt[e] - d/x)) - (a + b*ArcCos[1/( 
c*x)])/(4*e*(Sqrt[-d]*Sqrt[e] + d/x)) + (b*ArcTanh[(c^2*d - (Sqrt[-d]*Sqrt 
[e])/x)/(c*Sqrt[d]*Sqrt[c^2*d + e]*Sqrt[1 - 1/(c^2*x^2)])])/(4*Sqrt[d]*e*S 
qrt[c^2*d + e]) + (b*ArcTanh[(c^2*d + (Sqrt[-d]*Sqrt[e])/x)/(c*Sqrt[d]*Sqr 
t[c^2*d + e]*Sqrt[1 - 1/(c^2*x^2)])])/(4*Sqrt[d]*e*Sqrt[c^2*d + e]) + ((a 
+ b*ArcCos[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - 
 Sqrt[c^2*d + e])])/(4*Sqrt[-d]*e^(3/2)) - ((a + b*ArcCos[1/(c*x)])*Log[1 
+ (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(4*Sqrt 
[-d]*e^(3/2)) + ((a + b*ArcCos[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^(I*ArcCos[1 
/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(4*Sqrt[-d]*e^(3/2)) - ((a + b*Arc 
Cos[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] + Sqrt[c 
^2*d + e])])/(4*Sqrt[-d]*e^(3/2)) + ((I/4)*b*PolyLog[2, -((c*Sqrt[-d]*E^(I 
*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e]))])/(Sqrt[-d]*e^(3/2)) - ((I 
/4)*b*PolyLog[2, (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d 
+ e])])/(Sqrt[-d]*e^(3/2)) + ((I/4)*b*PolyLog[2, -((c*Sqrt[-d]*E^(I*ArcCos 
[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e]))])/(Sqrt[-d]*e^(3/2)) - ((I/4)*b*P 
olyLog[2, (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])]) 
/(Sqrt[-d]*e^(3/2))
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5173
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x 
_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCos[c*x])^n, (d + e*x^2)^p, x], x 
] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p] && (G 
tQ[p, 0] || IGtQ[n, 0])
 

rule 5763
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_) 
^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcCos[x/c])^n/x^( 
m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] 
&& IntegerQ[m] && IntegerQ[p]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 25.60 (sec) , antiderivative size = 852, normalized size of antiderivative = 1.14

method result size
parts \(-\frac {a x}{2 e \left (e \,x^{2}+d \right )}+\frac {a \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{2 e \sqrt {d e}}+\frac {b \left (-\frac {c^{5} \operatorname {arcsec}\left (c x \right ) x}{2 e \left (e \,c^{2} x^{2}+c^{2} d \right )}-\frac {i \sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 c \,d^{3} e}+\frac {i \sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (\sqrt {e \left (c^{2} d +e \right )}\, c^{2} d +2 c^{2} d e +2 \sqrt {e \left (c^{2} d +e \right )}\, e +2 e^{2}\right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 e \left (c^{2} d +e \right ) d^{3} c}-\frac {i \sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 c \,d^{3} e}+\frac {i \sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (-\sqrt {e \left (c^{2} d +e \right )}\, c^{2} d +2 c^{2} d e -2 \sqrt {e \left (c^{2} d +e \right )}\, e +2 e^{2}\right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 e \left (c^{2} d +e \right ) d^{3} c}+\frac {i c^{4} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\textit {\_R1} \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e}-\frac {i c^{4} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{4 e}\right )}{c^{3}}\) \(852\)
derivativedivides \(\frac {-\frac {a \,c^{5} x}{2 e \left (e \,c^{2} x^{2}+c^{2} d \right )}+\frac {a \,c^{3} \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{2 e \sqrt {d e}}+b \,c^{4} \left (-\frac {\operatorname {arcsec}\left (c x \right ) c x}{2 e \left (e \,c^{2} x^{2}+c^{2} d \right )}-\frac {i \sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 e \,c^{5} d^{3}}+\frac {i \sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (\sqrt {e \left (c^{2} d +e \right )}\, c^{2} d +2 c^{2} d e +2 \sqrt {e \left (c^{2} d +e \right )}\, e +2 e^{2}\right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 c^{5} e \left (c^{2} d +e \right ) d^{3}}-\frac {i \sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 e \,c^{5} d^{3}}+\frac {i \sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (-\sqrt {e \left (c^{2} d +e \right )}\, c^{2} d +2 c^{2} d e -2 \sqrt {e \left (c^{2} d +e \right )}\, e +2 e^{2}\right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 c^{5} e \left (c^{2} d +e \right ) d^{3}}+\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\textit {\_R1} \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e}-\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{4 e}\right )}{c^{3}}\) \(861\)
default \(\frac {-\frac {a \,c^{5} x}{2 e \left (e \,c^{2} x^{2}+c^{2} d \right )}+\frac {a \,c^{3} \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{2 e \sqrt {d e}}+b \,c^{4} \left (-\frac {\operatorname {arcsec}\left (c x \right ) c x}{2 e \left (e \,c^{2} x^{2}+c^{2} d \right )}-\frac {i \sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 e \,c^{5} d^{3}}+\frac {i \sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (\sqrt {e \left (c^{2} d +e \right )}\, c^{2} d +2 c^{2} d e +2 \sqrt {e \left (c^{2} d +e \right )}\, e +2 e^{2}\right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 c^{5} e \left (c^{2} d +e \right ) d^{3}}-\frac {i \sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 e \,c^{5} d^{3}}+\frac {i \sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (-\sqrt {e \left (c^{2} d +e \right )}\, c^{2} d +2 c^{2} d e -2 \sqrt {e \left (c^{2} d +e \right )}\, e +2 e^{2}\right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 c^{5} e \left (c^{2} d +e \right ) d^{3}}+\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\textit {\_R1} \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e}-\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{4 e}\right )}{c^{3}}\) \(861\)

Input:

int(x^2*(a+b*arcsec(c*x))/(e*x^2+d)^2,x,method=_RETURNVERBOSE)
 

Output:

-1/2*a/e*x/(e*x^2+d)+1/2*a/e/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))+b/c^3*(-1 
/2*c^5*arcsec(c*x)/e*x/(c^2*e*x^2+c^2*d)-1/2*I*(-(c^2*d-2*(e*(c^2*d+e))^(1 
/2)+2*e)*d)^(1/2)*(c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*arctanh(c*d*(1/c/x+I*( 
1-1/c^2/x^2)^(1/2))/((-c^2*d+2*(e*(c^2*d+e))^(1/2)-2*e)*d)^(1/2))/c/d^3/e+ 
1/2*I*(-(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2)*((e*(c^2*d+e))^(1/2)*c^ 
2*d+2*c^2*d*e+2*(e*(c^2*d+e))^(1/2)*e+2*e^2)*arctanh(c*d*(1/c/x+I*(1-1/c^2 
/x^2)^(1/2))/((-c^2*d+2*(e*(c^2*d+e))^(1/2)-2*e)*d)^(1/2))/e/(c^2*d+e)/d^3 
/c-1/2*I*((c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2)*(c^2*d-2*(e*(c^2*d+e) 
)^(1/2)+2*e)*arctan(c*d*(1/c/x+I*(1-1/c^2/x^2)^(1/2))/((c^2*d+2*(e*(c^2*d+ 
e))^(1/2)+2*e)*d)^(1/2))/c/d^3/e+1/2*I*((c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)* 
d)^(1/2)*(-(e*(c^2*d+e))^(1/2)*c^2*d+2*c^2*d*e-2*(e*(c^2*d+e))^(1/2)*e+2*e 
^2)*arctan(c*d*(1/c/x+I*(1-1/c^2/x^2)^(1/2))/((c^2*d+2*(e*(c^2*d+e))^(1/2) 
+2*e)*d)^(1/2))/e/(c^2*d+e)/d^3/c+1/4*I/e*c^4*sum(_R1/(_R1^2*c^2*d+c^2*d+2 
*e)*(I*arcsec(c*x)*ln((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-1/ 
c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+ 
c^2*d))-1/4*I/e*c^4*sum(1/_R1/(_R1^2*c^2*d+c^2*d+2*e)*(I*arcsec(c*x)*ln((_ 
R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2 
))/_R1)),_R1=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d)))
 

Fricas [F]

\[ \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arcsec}\left (c x\right ) + a\right )} x^{2}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \] Input:

integrate(x^2*(a+b*arcsec(c*x))/(e*x^2+d)^2,x, algorithm="fricas")
 

Output:

integral((b*x^2*arcsec(c*x) + a*x^2)/(e^2*x^4 + 2*d*e*x^2 + d^2), x)
 

Sympy [F]

\[ \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int \frac {x^{2} \left (a + b \operatorname {asec}{\left (c x \right )}\right )}{\left (d + e x^{2}\right )^{2}}\, dx \] Input:

integrate(x**2*(a+b*asec(c*x))/(e*x**2+d)**2,x)
 

Output:

Integral(x**2*(a + b*asec(c*x))/(d + e*x**2)**2, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(x^2*(a+b*arcsec(c*x))/(e*x^2+d)^2,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F(-2)]

Exception generated. \[ \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(x^2*(a+b*arcsec(c*x))/(e*x^2+d)^2,x, algorithm="giac")
 

Output:

Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int \frac {x^2\,\left (a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^2} \,d x \] Input:

int((x^2*(a + b*acos(1/(c*x))))/(d + e*x^2)^2,x)
 

Output:

int((x^2*(a + b*acos(1/(c*x))))/(d + e*x^2)^2, x)
 

Reduce [F]

\[ \int \frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\frac {\sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a d +\sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a e \,x^{2}+2 \left (\int \frac {\mathit {asec} \left (c x \right ) x^{2}}{e^{2} x^{4}+2 d e \,x^{2}+d^{2}}d x \right ) b \,d^{2} e^{2}+2 \left (\int \frac {\mathit {asec} \left (c x \right ) x^{2}}{e^{2} x^{4}+2 d e \,x^{2}+d^{2}}d x \right ) b d \,e^{3} x^{2}-a d e x}{2 d \,e^{2} \left (e \,x^{2}+d \right )} \] Input:

int(x^2*(a+b*asec(c*x))/(e*x^2+d)^2,x)
                                                                                    
                                                                                    
 

Output:

(sqrt(e)*sqrt(d)*atan((e*x)/(sqrt(e)*sqrt(d)))*a*d + sqrt(e)*sqrt(d)*atan( 
(e*x)/(sqrt(e)*sqrt(d)))*a*e*x**2 + 2*int((asec(c*x)*x**2)/(d**2 + 2*d*e*x 
**2 + e**2*x**4),x)*b*d**2*e**2 + 2*int((asec(c*x)*x**2)/(d**2 + 2*d*e*x** 
2 + e**2*x**4),x)*b*d*e**3*x**2 - a*d*e*x)/(2*d*e**2*(d + e*x**2))