\(\int \frac {a+b \sec ^{-1}(c x)}{(d+e x^2)^3} \, dx\) [110]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F]
Sympy [F(-1)]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 1114 \[ \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx =\text {Too large to display} \] Output:

1/16*b*c*e^(1/2)*(1-1/c^2/x^2)^(1/2)/(-d)^(3/2)/(c^2*d+e)/((-d)^(1/2)*e^(1 
/2)-d/x)+1/16*b*c*e^(1/2)*(1-1/c^2/x^2)^(1/2)/(-d)^(3/2)/(c^2*d+e)/((-d)^( 
1/2)*e^(1/2)+d/x)+1/16*e^(1/2)*(a+b*arcsec(c*x))/(-d)^(3/2)/((-d)^(1/2)*e^ 
(1/2)-d/x)^2-5/16*(a+b*arcsec(c*x))/d^2/((-d)^(1/2)*e^(1/2)-d/x)-1/16*e^(1 
/2)*(a+b*arcsec(c*x))/(-d)^(3/2)/((-d)^(1/2)*e^(1/2)+d/x)^2+5/16*(a+b*arcs 
ec(c*x))/d^2/((-d)^(1/2)*e^(1/2)+d/x)+1/16*b*e*arctanh((c^2*d-(-d)^(1/2)*e 
^(1/2)/x)/c/d^(1/2)/(c^2*d+e)^(1/2)/(1-1/c^2/x^2)^(1/2))/d^(5/2)/(c^2*d+e) 
^(3/2)-5/16*b*arctanh((c^2*d-(-d)^(1/2)*e^(1/2)/x)/c/d^(1/2)/(c^2*d+e)^(1/ 
2)/(1-1/c^2/x^2)^(1/2))/d^(5/2)/(c^2*d+e)^(1/2)+1/16*b*e*arctanh((c^2*d+(- 
d)^(1/2)*e^(1/2)/x)/c/d^(1/2)/(c^2*d+e)^(1/2)/(1-1/c^2/x^2)^(1/2))/d^(5/2) 
/(c^2*d+e)^(3/2)-5/16*b*arctanh((c^2*d+(-d)^(1/2)*e^(1/2)/x)/c/d^(1/2)/(c^ 
2*d+e)^(1/2)/(1-1/c^2/x^2)^(1/2))/d^(5/2)/(c^2*d+e)^(1/2)+3/16*(a+b*arcsec 
(c*x))*ln(1-c*(-d)^(1/2)*(1/c/x+I*(1-1/c^2/x^2)^(1/2))/(e^(1/2)-(c^2*d+e)^ 
(1/2)))/(-d)^(5/2)/e^(1/2)-3/16*(a+b*arcsec(c*x))*ln(1+c*(-d)^(1/2)*(1/c/x 
+I*(1-1/c^2/x^2)^(1/2))/(e^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(5/2)/e^(1/2)+3/16 
*(a+b*arcsec(c*x))*ln(1-c*(-d)^(1/2)*(1/c/x+I*(1-1/c^2/x^2)^(1/2))/(e^(1/2 
)+(c^2*d+e)^(1/2)))/(-d)^(5/2)/e^(1/2)-3/16*(a+b*arcsec(c*x))*ln(1+c*(-d)^ 
(1/2)*(1/c/x+I*(1-1/c^2/x^2)^(1/2))/(e^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(5/2)/ 
e^(1/2)-3/16*I*b*polylog(2,c*(-d)^(1/2)*(1/c/x+I*(1-1/c^2/x^2)^(1/2))/(e^( 
1/2)-(c^2*d+e)^(1/2)))/(-d)^(5/2)/e^(1/2)+3/16*I*b*polylog(2,-c*(-d)^(1...
 

Mathematica [A] (warning: unable to verify)

Time = 6.04 (sec) , antiderivative size = 1812, normalized size of antiderivative = 1.63 \[ \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx =\text {Too large to display} \] Input:

Integrate[(a + b*ArcSec[c*x])/(d + e*x^2)^3,x]
 

Output:

(a*x)/(4*d*(d + e*x^2)^2) + (3*a*x)/(8*d^2*(d + e*x^2)) + (3*a*ArcTan[(Sqr 
t[e]*x)/Sqrt[d]])/(8*d^(5/2)*Sqrt[e]) + b*((-3*(-(ArcSec[c*x]/(I*Sqrt[d]*S 
qrt[e] + e*x)) + (I*(ArcSin[1/(c*x)]/Sqrt[e] - Log[(2*Sqrt[d]*Sqrt[e]*(Sqr 
t[e] + c*(I*c*Sqrt[d] - Sqrt[-(c^2*d) - e]*Sqrt[1 - 1/(c^2*x^2)])*x))/(Sqr 
t[-(c^2*d) - e]*(Sqrt[d] - I*Sqrt[e]*x))]/Sqrt[-(c^2*d) - e]))/Sqrt[d]))/( 
16*d^2) - (3*(-(ArcSec[c*x]/((-I)*Sqrt[d]*Sqrt[e] + e*x)) - (I*(ArcSin[1/( 
c*x)]/Sqrt[e] - Log[(2*Sqrt[d]*Sqrt[e]*(-Sqrt[e] + c*(I*c*Sqrt[d] + Sqrt[- 
(c^2*d) - e]*Sqrt[1 - 1/(c^2*x^2)])*x))/(Sqrt[-(c^2*d) - e]*(Sqrt[d] + I*S 
qrt[e]*x))]/Sqrt[-(c^2*d) - e]))/Sqrt[d]))/(16*d^2) + ((I/16)*(-(ArcSec[c* 
x]/(Sqrt[e]*((-I)*Sqrt[d] + Sqrt[e]*x)^2)) + (ArcSin[1/(c*x)]/Sqrt[e] - I* 
((c*Sqrt[d]*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)]*x)/((c^2*d + e)*((-I)*Sqrt[d] + 
Sqrt[e]*x)) + ((2*c^2*d + e)*Log[(-4*d*Sqrt[e]*Sqrt[c^2*d + e]*(I*Sqrt[e] 
+ c*(c*Sqrt[d] - Sqrt[c^2*d + e]*Sqrt[1 - 1/(c^2*x^2)])*x))/((2*c^2*d + e) 
*((-I)*Sqrt[d] + Sqrt[e]*x))])/(c^2*d + e)^(3/2)))/d))/d^(3/2) - ((I/16)*( 
(I*c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)]*x)/(Sqrt[d]*(c^2*d + e)*(I*Sqrt[d] + Sq 
rt[e]*x)) - ArcSec[c*x]/(Sqrt[e]*(I*Sqrt[d] + Sqrt[e]*x)^2) + ArcSin[1/(c* 
x)]/(d*Sqrt[e]) - (I*(2*c^2*d + e)*Log[(4*d*Sqrt[e]*Sqrt[c^2*d + e]*((-I)* 
Sqrt[e] + c*(c*Sqrt[d] + Sqrt[c^2*d + e]*Sqrt[1 - 1/(c^2*x^2)])*x))/((2*c^ 
2*d + e)*(I*Sqrt[d] + Sqrt[e]*x))])/(d*(c^2*d + e)^(3/2))))/d^(3/2) + (3*( 
8*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[((I*c*Sqrt[d...
 

Rubi [A] (verified)

Time = 4.31 (sec) , antiderivative size = 1178, normalized size of antiderivative = 1.06, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {5753, 5233, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx\)

\(\Big \downarrow \) 5753

\(\displaystyle -\int \frac {a+b \arccos \left (\frac {1}{c x}\right )}{\left (\frac {d}{x^2}+e\right )^3 x^4}d\frac {1}{x}\)

\(\Big \downarrow \) 5233

\(\displaystyle -\int \left (\frac {\left (a+b \arccos \left (\frac {1}{c x}\right )\right ) e^2}{d^2 \left (\frac {d}{x^2}+e\right )^3}-\frac {2 \left (a+b \arccos \left (\frac {1}{c x}\right )\right ) e}{d^2 \left (\frac {d}{x^2}+e\right )^2}+\frac {a+b \arccos \left (\frac {1}{c x}\right )}{d^2 \left (\frac {d}{x^2}+e\right )}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {b \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} c}{16 (-d)^{3/2} \left (d c^2+e\right ) \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}+\frac {b \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} c}{16 (-d)^{3/2} \left (d c^2+e\right ) \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )}-\frac {5 \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{16 d^2 \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}+\frac {5 \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{16 d^2 \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )}+\frac {\sqrt {e} \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{16 (-d)^{3/2} \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )^2}-\frac {\sqrt {e} \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{16 (-d)^{3/2} \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )^2}-\frac {5 b \text {arctanh}\left (\frac {c^2 d-\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {d c^2+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{16 d^{5/2} \sqrt {d c^2+e}}+\frac {b e \text {arctanh}\left (\frac {c^2 d-\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {d c^2+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{16 d^{5/2} \left (d c^2+e\right )^{3/2}}-\frac {5 b \text {arctanh}\left (\frac {d c^2+\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {d c^2+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{16 d^{5/2} \sqrt {d c^2+e}}+\frac {b e \text {arctanh}\left (\frac {d c^2+\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {d c^2+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{16 d^{5/2} \left (d c^2+e\right )^{3/2}}+\frac {3 \left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{16 (-d)^{5/2} \sqrt {e}}-\frac {3 \left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (\frac {\sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )} c}{\sqrt {e}-\sqrt {d c^2+e}}+1\right )}{16 (-d)^{5/2} \sqrt {e}}+\frac {3 \left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{16 (-d)^{5/2} \sqrt {e}}-\frac {3 \left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (\frac {\sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )} c}{\sqrt {e}+\sqrt {d c^2+e}}+1\right )}{16 (-d)^{5/2} \sqrt {e}}+\frac {3 i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{16 (-d)^{5/2} \sqrt {e}}-\frac {3 i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{16 (-d)^{5/2} \sqrt {e}}+\frac {3 i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{16 (-d)^{5/2} \sqrt {e}}-\frac {3 i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{16 (-d)^{5/2} \sqrt {e}}\)

Input:

Int[(a + b*ArcSec[c*x])/(d + e*x^2)^3,x]
 

Output:

(b*c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)])/(16*(-d)^(3/2)*(c^2*d + e)*(Sqrt[-d]*S 
qrt[e] - d/x)) + (b*c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)])/(16*(-d)^(3/2)*(c^2*d 
 + e)*(Sqrt[-d]*Sqrt[e] + d/x)) + (Sqrt[e]*(a + b*ArcCos[1/(c*x)]))/(16*(- 
d)^(3/2)*(Sqrt[-d]*Sqrt[e] - d/x)^2) - (5*(a + b*ArcCos[1/(c*x)]))/(16*d^2 
*(Sqrt[-d]*Sqrt[e] - d/x)) - (Sqrt[e]*(a + b*ArcCos[1/(c*x)]))/(16*(-d)^(3 
/2)*(Sqrt[-d]*Sqrt[e] + d/x)^2) + (5*(a + b*ArcCos[1/(c*x)]))/(16*d^2*(Sqr 
t[-d]*Sqrt[e] + d/x)) + (b*e*ArcTanh[(c^2*d - (Sqrt[-d]*Sqrt[e])/x)/(c*Sqr 
t[d]*Sqrt[c^2*d + e]*Sqrt[1 - 1/(c^2*x^2)])])/(16*d^(5/2)*(c^2*d + e)^(3/2 
)) - (5*b*ArcTanh[(c^2*d - (Sqrt[-d]*Sqrt[e])/x)/(c*Sqrt[d]*Sqrt[c^2*d + e 
]*Sqrt[1 - 1/(c^2*x^2)])])/(16*d^(5/2)*Sqrt[c^2*d + e]) + (b*e*ArcTanh[(c^ 
2*d + (Sqrt[-d]*Sqrt[e])/x)/(c*Sqrt[d]*Sqrt[c^2*d + e]*Sqrt[1 - 1/(c^2*x^2 
)])])/(16*d^(5/2)*(c^2*d + e)^(3/2)) - (5*b*ArcTanh[(c^2*d + (Sqrt[-d]*Sqr 
t[e])/x)/(c*Sqrt[d]*Sqrt[c^2*d + e]*Sqrt[1 - 1/(c^2*x^2)])])/(16*d^(5/2)*S 
qrt[c^2*d + e]) + (3*(a + b*ArcCos[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^(I*ArcC 
os[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(16*(-d)^(5/2)*Sqrt[e]) - (3*( 
a + b*ArcCos[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] 
 - Sqrt[c^2*d + e])])/(16*(-d)^(5/2)*Sqrt[e]) + (3*(a + b*ArcCos[1/(c*x)]) 
*Log[1 - (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/ 
(16*(-d)^(5/2)*Sqrt[e]) - (3*(a + b*ArcCos[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E 
^(I*ArcCos[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(16*(-d)^(5/2)*Sqrt...
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5233
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCos[c*x])^n, ( 
f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d + 
 e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 5753
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_.), 
x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcCos[x/c])^n/x^(2*(p + 1))) 
, x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && IntegerQ[p]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 78.48 (sec) , antiderivative size = 1812, normalized size of antiderivative = 1.63

method result size
parts \(\text {Expression too large to display}\) \(1812\)
derivativedivides \(\text {Expression too large to display}\) \(1837\)
default \(\text {Expression too large to display}\) \(1837\)

Input:

int((a+b*arcsec(c*x))/(e*x^2+d)^3,x,method=_RETURNVERBOSE)
 

Output:

1/4*a*x/d/(e*x^2+d)^2+3/8*a/d^2*x/(e*x^2+d)+3/8*a/d^2/(d*e)^(1/2)*arctan(e 
*x/(d*e)^(1/2))+b/c*(1/8*x*c^3*(5*d^2*c^4*arcsec(c*x)+3*c^4*d*e*arcsec(c*x 
)*x^2+((c^2*x^2-1)/c^2/x^2)^(1/2)*c^3*d*e*x+((c^2*x^2-1)/c^2/x^2)^(1/2)*e^ 
2*c^3*x^3+5*c^2*d*e*arcsec(c*x)+3*e^2*arcsec(c*x)*c^2*x^2)/d^2/(c^2*d+e)/( 
c^2*e*x^2+c^2*d)^2-3/16*I/(c^2*d+e)/d*c^4*sum(1/_R1/(_R1^2*c^2*d+c^2*d+2*e 
)*(I*arcsec(c*x)*ln((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-1/c/ 
x-I*(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^ 
2*d))-1/2*I*(-(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2)*((e*(c^2*d+e))^(1 
/2)*c^2*d+2*c^2*d*e+2*(e*(c^2*d+e))^(1/2)*e+2*e^2)*e*arctanh(c*d*(1/c/x+I* 
(1-1/c^2/x^2)^(1/2))/((-c^2*d+2*(e*(c^2*d+e))^(1/2)-2*e)*d)^(1/2))/(c^2*d+ 
e)^2/d^5/c^3+1/2*I*((c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2)*(c^2*d-2*(e 
*(c^2*d+e))^(1/2)+2*e)*arctan(c*d*(1/c/x+I*(1-1/c^2/x^2)^(1/2))/((c^2*d+2* 
(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2))*e/c^3/d^5/(c^2*d+e)-5/8*I*(-(c^2*d-2*(e 
*(c^2*d+e))^(1/2)+2*e)*d)^(1/2)*((e*(c^2*d+e))^(1/2)*c^2*d+2*c^2*d*e+2*(e* 
(c^2*d+e))^(1/2)*e+2*e^2)*arctanh(c*d*(1/c/x+I*(1-1/c^2/x^2)^(1/2))/((-c^2 
*d+2*(e*(c^2*d+e))^(1/2)-2*e)*d)^(1/2))/(c^2*d+e)^2/d^4/c+3/16*I/(c^2*d+e) 
/d*c^4*sum(_R1/(_R1^2*c^2*d+c^2*d+2*e)*(I*arcsec(c*x)*ln((_R1-1/c/x-I*(1-1 
/c^2/x^2)^(1/2))/_R1)+dilog((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)),_R1=Ro 
otOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d))-5/8*I*((c^2*d+2*(e*(c^2*d+e))^( 
1/2)+2*e)*d)^(1/2)*(-(e*(c^2*d+e))^(1/2)*c^2*d+2*c^2*d*e-2*(e*(c^2*d+e)...
 

Fricas [F]

\[ \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\int { \frac {b \operatorname {arcsec}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{3}} \,d x } \] Input:

integrate((a+b*arcsec(c*x))/(e*x^2+d)^3,x, algorithm="fricas")
 

Output:

integral((b*arcsec(c*x) + a)/(e^3*x^6 + 3*d*e^2*x^4 + 3*d^2*e*x^2 + d^3), 
x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\text {Timed out} \] Input:

integrate((a+b*asec(c*x))/(e*x**2+d)**3,x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((a+b*arcsec(c*x))/(e*x^2+d)^3,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F(-2)]

Exception generated. \[ \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate((a+b*arcsec(c*x))/(e*x^2+d)^3,x, algorithm="giac")
 

Output:

Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\int \frac {a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )}{{\left (e\,x^2+d\right )}^3} \,d x \] Input:

int((a + b*acos(1/(c*x)))/(d + e*x^2)^3,x)
 

Output:

int((a + b*acos(1/(c*x)))/(d + e*x^2)^3, x)
 

Reduce [F]

\[ \int \frac {a+b \sec ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\frac {3 \sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a \,d^{2}+6 \sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a d e \,x^{2}+3 \sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a \,e^{2} x^{4}+8 \left (\int \frac {\mathit {asec} \left (c x \right )}{e^{3} x^{6}+3 d \,e^{2} x^{4}+3 d^{2} e \,x^{2}+d^{3}}d x \right ) b \,d^{5} e +16 \left (\int \frac {\mathit {asec} \left (c x \right )}{e^{3} x^{6}+3 d \,e^{2} x^{4}+3 d^{2} e \,x^{2}+d^{3}}d x \right ) b \,d^{4} e^{2} x^{2}+8 \left (\int \frac {\mathit {asec} \left (c x \right )}{e^{3} x^{6}+3 d \,e^{2} x^{4}+3 d^{2} e \,x^{2}+d^{3}}d x \right ) b \,d^{3} e^{3} x^{4}+5 a \,d^{2} e x +3 a d \,e^{2} x^{3}}{8 d^{3} e \left (e^{2} x^{4}+2 d e \,x^{2}+d^{2}\right )} \] Input:

int((a+b*asec(c*x))/(e*x^2+d)^3,x)
                                                                                    
                                                                                    
 

Output:

(3*sqrt(e)*sqrt(d)*atan((e*x)/(sqrt(e)*sqrt(d)))*a*d**2 + 6*sqrt(e)*sqrt(d 
)*atan((e*x)/(sqrt(e)*sqrt(d)))*a*d*e*x**2 + 3*sqrt(e)*sqrt(d)*atan((e*x)/ 
(sqrt(e)*sqrt(d)))*a*e**2*x**4 + 8*int(asec(c*x)/(d**3 + 3*d**2*e*x**2 + 3 
*d*e**2*x**4 + e**3*x**6),x)*b*d**5*e + 16*int(asec(c*x)/(d**3 + 3*d**2*e* 
x**2 + 3*d*e**2*x**4 + e**3*x**6),x)*b*d**4*e**2*x**2 + 8*int(asec(c*x)/(d 
**3 + 3*d**2*e*x**2 + 3*d*e**2*x**4 + e**3*x**6),x)*b*d**3*e**3*x**4 + 5*a 
*d**2*e*x + 3*a*d*e**2*x**3)/(8*d**3*e*(d**2 + 2*d*e*x**2 + e**2*x**4))