\(\int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx\) [100]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F]
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 529 \[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx=-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}} \] Output:

-1/2*(a+b*arccsc(c*x))*ln(1-I*c*(-d)^(1/2)*(I/c/x+(1-1/c^2/x^2)^(1/2))/(e^ 
(1/2)-(c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(1/2)+1/2*(a+b*arccsc(c*x))*ln(1+I*c* 
(-d)^(1/2)*(I/c/x+(1-1/c^2/x^2)^(1/2))/(e^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(1/ 
2)/e^(1/2)-1/2*(a+b*arccsc(c*x))*ln(1-I*c*(-d)^(1/2)*(I/c/x+(1-1/c^2/x^2)^ 
(1/2))/(e^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(1/2)+1/2*(a+b*arccsc(c*x)) 
*ln(1+I*c*(-d)^(1/2)*(I/c/x+(1-1/c^2/x^2)^(1/2))/(e^(1/2)+(c^2*d+e)^(1/2)) 
)/(-d)^(1/2)/e^(1/2)-1/2*I*b*polylog(2,-I*c*(-d)^(1/2)*(I/c/x+(1-1/c^2/x^2 
)^(1/2))/(e^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(1/2)+1/2*I*b*polylog(2,I 
*c*(-d)^(1/2)*(I/c/x+(1-1/c^2/x^2)^(1/2))/(e^(1/2)-(c^2*d+e)^(1/2)))/(-d)^ 
(1/2)/e^(1/2)-1/2*I*b*polylog(2,-I*c*(-d)^(1/2)*(I/c/x+(1-1/c^2/x^2)^(1/2) 
)/(e^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(1/2)/e^(1/2)+1/2*I*b*polylog(2,I*c*(-d) 
^(1/2)*(I/c/x+(1-1/c^2/x^2)^(1/2))/(e^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(1/2)/e 
^(1/2)
 

Mathematica [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(1068\) vs. \(2(529)=1058\).

Time = 0.43 (sec) , antiderivative size = 1068, normalized size of antiderivative = 2.02 \[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx =\text {Too large to display} \] Input:

Integrate[(a + b*ArcCsc[c*x])/(d + e*x^2),x]
 

Output:

((-1/4*I)*((4*I)*a*ArcTan[(Sqrt[e]*x)/Sqrt[d]] + (8*I)*b*ArcSin[Sqrt[1 - ( 
I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[(((-I)*c*Sqrt[d] + Sqrt[e])*Cot[(P 
i + 2*ArcCsc[c*x])/4])/Sqrt[c^2*d + e]] - (8*I)*b*ArcSin[Sqrt[1 + (I*Sqrt[ 
e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[((I*c*Sqrt[d] + Sqrt[e])*Cot[(Pi + 2*ArcC 
sc[c*x])/4])/Sqrt[c^2*d + e]] + b*Pi*Log[1 + (Sqrt[e] - Sqrt[c^2*d + e])/( 
c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - 2*b*ArcCsc[c*x]*Log[1 + (Sqrt[e] - Sqrt[c^ 
2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + 4*b*ArcSin[Sqrt[1 - (I*Sqrt[e]) 
/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (Sqrt[e] - Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I 
*ArcCsc[c*x]))] - b*Pi*Log[1 + (-Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^( 
I*ArcCsc[c*x]))] + 2*b*ArcCsc[c*x]*Log[1 + (-Sqrt[e] + Sqrt[c^2*d + e])/(c 
*Sqrt[d]*E^(I*ArcCsc[c*x]))] - 4*b*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d]) 
]/Sqrt[2]]*Log[1 + (-Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x 
]))] - b*Pi*Log[1 - (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x 
]))] + 2*b*ArcCsc[c*x]*Log[1 - (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I 
*ArcCsc[c*x]))] + 4*b*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Lo 
g[1 - (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + b*Pi*Lo 
g[1 + (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - 2*b*Arc 
Csc[c*x]*Log[1 + (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x])) 
] - 4*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (Sqrt[e] 
 + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + b*Pi*Log[Sqrt[e] -...
 

Rubi [A] (verified)

Time = 1.36 (sec) , antiderivative size = 577, normalized size of antiderivative = 1.09, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {5754, 5172, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx\)

\(\Big \downarrow \) 5754

\(\displaystyle -\int \frac {a+b \arcsin \left (\frac {1}{c x}\right )}{\frac {d}{x^2}+e}d\frac {1}{x}\)

\(\Big \downarrow \) 5172

\(\displaystyle -\int \left (\frac {a+b \arcsin \left (\frac {1}{c x}\right )}{2 \sqrt {e} \left (\sqrt {e}-\frac {\sqrt {-d}}{x}\right )}+\frac {a+b \arcsin \left (\frac {1}{c x}\right )}{2 \sqrt {e} \left (\frac {\sqrt {-d}}{x}+\sqrt {e}\right )}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {\left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {\left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {\left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 \sqrt {-d} \sqrt {e}}\)

Input:

Int[(a + b*ArcCsc[c*x])/(d + e*x^2),x]
 

Output:

-1/2*((a + b*ArcSin[1/(c*x)])*Log[1 - (I*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)])) 
/(Sqrt[e] - Sqrt[c^2*d + e])])/(Sqrt[-d]*Sqrt[e]) + ((a + b*ArcSin[1/(c*x) 
])*Log[1 + (I*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e] 
)])/(2*Sqrt[-d]*Sqrt[e]) - ((a + b*ArcSin[1/(c*x)])*Log[1 - (I*c*Sqrt[-d]* 
E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*Sqrt[-d]*Sqrt[e]) 
+ ((a + b*ArcSin[1/(c*x)])*Log[1 + (I*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(S 
qrt[e] + Sqrt[c^2*d + e])])/(2*Sqrt[-d]*Sqrt[e]) - ((I/2)*b*PolyLog[2, ((- 
I)*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(Sqrt[- 
d]*Sqrt[e]) + ((I/2)*b*PolyLog[2, (I*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(Sq 
rt[e] - Sqrt[c^2*d + e])])/(Sqrt[-d]*Sqrt[e]) - ((I/2)*b*PolyLog[2, ((-I)* 
c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(Sqrt[-d]* 
Sqrt[e]) + ((I/2)*b*PolyLog[2, (I*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[ 
e] + Sqrt[c^2*d + e])])/(Sqrt[-d]*Sqrt[e])
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5172
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x 
_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSin[c*x])^n, (d + e*x^2)^p, x], x 
] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p] && (G 
tQ[p, 0] || IGtQ[n, 0])
 

rule 5754
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_.), 
x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcSin[x/c])^n/x^(2*(p + 1))) 
, x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && IntegerQ[p]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 34.54 (sec) , antiderivative size = 272, normalized size of antiderivative = 0.51

method result size
parts \(\frac {a \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e}}-\frac {b c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e \right )}\right )}{2}-\frac {b c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\textit {\_R1} \left (i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right )}{2}\) \(272\)
derivativedivides \(\frac {\frac {a c \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e}}+b \,c^{2} \left (-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e \right )}\right )}{2}-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\textit {\_R1} \left (i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right )}{2}\right )}{c}\) \(279\)
default \(\frac {\frac {a c \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e}}+b \,c^{2} \left (-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e \right )}\right )}{2}-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\textit {\_R1} \left (i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right )}{2}\right )}{c}\) \(279\)

Input:

int((a+b*arccsc(c*x))/(e*x^2+d),x,method=_RETURNVERBOSE)
 

Output:

a/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))-1/2*b*c*sum(1/_R1/(_R1^2*c^2*d-c^2*d 
-2*e)*(I*arccsc(c*x)*ln((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-I/ 
c/x-(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(-2*c^2*d-4*e)*_Z^2+c 
^2*d))-1/2*b*c*sum(_R1/(_R1^2*c^2*d-c^2*d-2*e)*(I*arccsc(c*x)*ln((_R1-I/c/ 
x-(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)),_R 
1=RootOf(c^2*d*_Z^4+(-2*c^2*d-4*e)*_Z^2+c^2*d))
 

Fricas [F]

\[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx=\int { \frac {b \operatorname {arccsc}\left (c x\right ) + a}{e x^{2} + d} \,d x } \] Input:

integrate((a+b*arccsc(c*x))/(e*x^2+d),x, algorithm="fricas")
 

Output:

integral((b*arccsc(c*x) + a)/(e*x^2 + d), x)
 

Sympy [F]

\[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx=\int \frac {a + b \operatorname {acsc}{\left (c x \right )}}{d + e x^{2}}\, dx \] Input:

integrate((a+b*acsc(c*x))/(e*x**2+d),x)
 

Output:

Integral((a + b*acsc(c*x))/(d + e*x**2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((a+b*arccsc(c*x))/(e*x^2+d),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F(-2)]

Exception generated. \[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate((a+b*arccsc(c*x))/(e*x^2+d),x, algorithm="giac")
 

Output:

Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx=\int \frac {a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )}{e\,x^2+d} \,d x \] Input:

int((a + b*asin(1/(c*x)))/(d + e*x^2),x)
 

Output:

int((a + b*asin(1/(c*x)))/(d + e*x^2), x)
 

Reduce [F]

\[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx=\frac {\sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a +\left (\int \frac {\mathit {acsc} \left (c x \right )}{e \,x^{2}+d}d x \right ) b d e}{d e} \] Input:

int((a+b*acsc(c*x))/(e*x^2+d),x)
                                                                                    
                                                                                    
 

Output:

(sqrt(e)*sqrt(d)*atan((e*x)/(sqrt(e)*sqrt(d)))*a + int(acsc(c*x)/(d + e*x* 
*2),x)*b*d*e)/(d*e)