\(\int \frac {a+b \csc ^{-1}(c x)}{(d+e x^2)^3} \, dx\) [117]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F]
Sympy [F(-1)]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 1134 \[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx =\text {Too large to display} \] Output:

-1/16*b*c*e^(1/2)*(1-1/c^2/x^2)^(1/2)/(-d)^(3/2)/(c^2*d+e)/((-d)^(1/2)*e^( 
1/2)-d/x)-1/16*b*c*e^(1/2)*(1-1/c^2/x^2)^(1/2)/(-d)^(3/2)/(c^2*d+e)/((-d)^ 
(1/2)*e^(1/2)+d/x)+1/16*e^(1/2)*(a+b*arccsc(c*x))/(-d)^(3/2)/((-d)^(1/2)*e 
^(1/2)-d/x)^2-5/16*(a+b*arccsc(c*x))/d^2/((-d)^(1/2)*e^(1/2)-d/x)-1/16*e^( 
1/2)*(a+b*arccsc(c*x))/(-d)^(3/2)/((-d)^(1/2)*e^(1/2)+d/x)^2+5/16*(a+b*arc 
csc(c*x))/d^2/((-d)^(1/2)*e^(1/2)+d/x)-1/16*b*e*arctanh((c^2*d-(-d)^(1/2)* 
e^(1/2)/x)/c/d^(1/2)/(c^2*d+e)^(1/2)/(1-1/c^2/x^2)^(1/2))/d^(5/2)/(c^2*d+e 
)^(3/2)+5/16*b*arctanh((c^2*d-(-d)^(1/2)*e^(1/2)/x)/c/d^(1/2)/(c^2*d+e)^(1 
/2)/(1-1/c^2/x^2)^(1/2))/d^(5/2)/(c^2*d+e)^(1/2)-1/16*b*e*arctanh((c^2*d+( 
-d)^(1/2)*e^(1/2)/x)/c/d^(1/2)/(c^2*d+e)^(1/2)/(1-1/c^2/x^2)^(1/2))/d^(5/2 
)/(c^2*d+e)^(3/2)+5/16*b*arctanh((c^2*d+(-d)^(1/2)*e^(1/2)/x)/c/d^(1/2)/(c 
^2*d+e)^(1/2)/(1-1/c^2/x^2)^(1/2))/d^(5/2)/(c^2*d+e)^(1/2)-3/16*(a+b*arccs 
c(c*x))*ln(1-I*c*(-d)^(1/2)*(I/c/x+(1-1/c^2/x^2)^(1/2))/(e^(1/2)-(c^2*d+e) 
^(1/2)))/(-d)^(5/2)/e^(1/2)+3/16*(a+b*arccsc(c*x))*ln(1+I*c*(-d)^(1/2)*(I/ 
c/x+(1-1/c^2/x^2)^(1/2))/(e^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(5/2)/e^(1/2)-3/1 
6*(a+b*arccsc(c*x))*ln(1-I*c*(-d)^(1/2)*(I/c/x+(1-1/c^2/x^2)^(1/2))/(e^(1/ 
2)+(c^2*d+e)^(1/2)))/(-d)^(5/2)/e^(1/2)+3/16*(a+b*arccsc(c*x))*ln(1+I*c*(- 
d)^(1/2)*(I/c/x+(1-1/c^2/x^2)^(1/2))/(e^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(5/2) 
/e^(1/2)-3/16*I*b*polylog(2,-I*c*(-d)^(1/2)*(I/c/x+(1-1/c^2/x^2)^(1/2))/(e 
^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(5/2)/e^(1/2)+3/16*I*b*polylog(2,I*c*(-d)...
 

Mathematica [A] (warning: unable to verify)

Time = 6.04 (sec) , antiderivative size = 2060, normalized size of antiderivative = 1.82 \[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\text {Result too large to show} \] Input:

Integrate[(a + b*ArcCsc[c*x])/(d + e*x^2)^3,x]
 

Output:

(a*x)/(4*d*(d + e*x^2)^2) + (3*a*x)/(8*d^2*(d + e*x^2)) + (3*a*ArcTan[(Sqr 
t[e]*x)/Sqrt[d]])/(8*d^(5/2)*Sqrt[e]) + b*((-3*(-(ArcCsc[c*x]/((-I)*Sqrt[d 
]*Sqrt[e] + e*x)) + (I*(ArcSin[1/(c*x)]/Sqrt[e] - Log[(2*Sqrt[d]*Sqrt[e]*( 
Sqrt[e] + c*((-I)*c*Sqrt[d] - Sqrt[-(c^2*d) - e]*Sqrt[1 - 1/(c^2*x^2)])*x) 
)/(Sqrt[-(c^2*d) - e]*(Sqrt[d] + I*Sqrt[e]*x))]/Sqrt[-(c^2*d) - e]))/Sqrt[ 
d]))/(16*d^2) - (3*(-(ArcCsc[c*x]/(I*Sqrt[d]*Sqrt[e] + e*x)) - (I*(ArcSin[ 
1/(c*x)]/Sqrt[e] - Log[(2*Sqrt[d]*Sqrt[e]*(-Sqrt[e] + c*((-I)*c*Sqrt[d] + 
Sqrt[-(c^2*d) - e]*Sqrt[1 - 1/(c^2*x^2)])*x))/(Sqrt[-(c^2*d) - e]*(Sqrt[d] 
 - I*Sqrt[e]*x))]/Sqrt[-(c^2*d) - e]))/Sqrt[d]))/(16*d^2) + ((I/16)*((I*c* 
Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)]*x)/(Sqrt[d]*(c^2*d + e)*((-I)*Sqrt[d] + Sqrt 
[e]*x)) - ArcCsc[c*x]/(Sqrt[e]*((-I)*Sqrt[d] + Sqrt[e]*x)^2) - ArcSin[1/(c 
*x)]/(d*Sqrt[e]) + (I*(2*c^2*d + e)*Log[(4*d*Sqrt[e]*Sqrt[c^2*d + e]*(I*Sq 
rt[e] + c*(c*Sqrt[d] - Sqrt[c^2*d + e]*Sqrt[1 - 1/(c^2*x^2)])*x))/((2*c^2* 
d + e)*((-I)*Sqrt[d] + Sqrt[e]*x))])/(d*(c^2*d + e)^(3/2))))/d^(3/2) - ((I 
/16)*(((-I)*c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)]*x)/(Sqrt[d]*(c^2*d + e)*(I*Sqr 
t[d] + Sqrt[e]*x)) - ArcCsc[c*x]/(Sqrt[e]*(I*Sqrt[d] + Sqrt[e]*x)^2) - Arc 
Sin[1/(c*x)]/(d*Sqrt[e]) + (I*(2*c^2*d + e)*Log[(-4*d*Sqrt[e]*Sqrt[c^2*d + 
 e]*((-I)*Sqrt[e] + c*(c*Sqrt[d] + Sqrt[c^2*d + e]*Sqrt[1 - 1/(c^2*x^2)])* 
x))/((2*c^2*d + e)*(I*Sqrt[d] + Sqrt[e]*x))])/(d*(c^2*d + e)^(3/2))))/d^(3 
/2) - (3*(Pi^2 - 4*Pi*ArcCsc[c*x] + 8*ArcCsc[c*x]^2 - 32*ArcSin[Sqrt[1 ...
 

Rubi [A] (verified)

Time = 4.06 (sec) , antiderivative size = 1198, normalized size of antiderivative = 1.06, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {5754, 5232, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx\)

\(\Big \downarrow \) 5754

\(\displaystyle -\int \frac {a+b \arcsin \left (\frac {1}{c x}\right )}{\left (\frac {d}{x^2}+e\right )^3 x^4}d\frac {1}{x}\)

\(\Big \downarrow \) 5232

\(\displaystyle -\int \left (\frac {\left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) e^2}{d^2 \left (\frac {d}{x^2}+e\right )^3}-\frac {2 \left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) e}{d^2 \left (\frac {d}{x^2}+e\right )^2}+\frac {a+b \arcsin \left (\frac {1}{c x}\right )}{d^2 \left (\frac {d}{x^2}+e\right )}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {b \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} c}{16 (-d)^{3/2} \left (d c^2+e\right ) \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}-\frac {b \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} c}{16 (-d)^{3/2} \left (d c^2+e\right ) \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )}-\frac {5 \left (a+b \arcsin \left (\frac {1}{c x}\right )\right )}{16 d^2 \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}+\frac {5 \left (a+b \arcsin \left (\frac {1}{c x}\right )\right )}{16 d^2 \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )}+\frac {\sqrt {e} \left (a+b \arcsin \left (\frac {1}{c x}\right )\right )}{16 (-d)^{3/2} \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )^2}-\frac {\sqrt {e} \left (a+b \arcsin \left (\frac {1}{c x}\right )\right )}{16 (-d)^{3/2} \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )^2}+\frac {5 b \text {arctanh}\left (\frac {c^2 d-\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {d c^2+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{16 d^{5/2} \sqrt {d c^2+e}}-\frac {b e \text {arctanh}\left (\frac {c^2 d-\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {d c^2+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{16 d^{5/2} \left (d c^2+e\right )^{3/2}}+\frac {5 b \text {arctanh}\left (\frac {d c^2+\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {d c^2+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{16 d^{5/2} \sqrt {d c^2+e}}-\frac {b e \text {arctanh}\left (\frac {d c^2+\frac {\sqrt {-d} \sqrt {e}}{x}}{c \sqrt {d} \sqrt {d c^2+e} \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{16 d^{5/2} \left (d c^2+e\right )^{3/2}}-\frac {3 \left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{16 (-d)^{5/2} \sqrt {e}}+\frac {3 \left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (\frac {i \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )} c}{\sqrt {e}-\sqrt {d c^2+e}}+1\right )}{16 (-d)^{5/2} \sqrt {e}}-\frac {3 \left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{16 (-d)^{5/2} \sqrt {e}}+\frac {3 \left (a+b \arcsin \left (\frac {1}{c x}\right )\right ) \log \left (\frac {i \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )} c}{\sqrt {e}+\sqrt {d c^2+e}}+1\right )}{16 (-d)^{5/2} \sqrt {e}}-\frac {3 i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{16 (-d)^{5/2} \sqrt {e}}+\frac {3 i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{16 (-d)^{5/2} \sqrt {e}}-\frac {3 i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{16 (-d)^{5/2} \sqrt {e}}+\frac {3 i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \arcsin \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{16 (-d)^{5/2} \sqrt {e}}\)

Input:

Int[(a + b*ArcCsc[c*x])/(d + e*x^2)^3,x]
 

Output:

-1/16*(b*c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)])/((-d)^(3/2)*(c^2*d + e)*(Sqrt[-d 
]*Sqrt[e] - d/x)) - (b*c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)])/(16*(-d)^(3/2)*(c^ 
2*d + e)*(Sqrt[-d]*Sqrt[e] + d/x)) + (Sqrt[e]*(a + b*ArcSin[1/(c*x)]))/(16 
*(-d)^(3/2)*(Sqrt[-d]*Sqrt[e] - d/x)^2) - (5*(a + b*ArcSin[1/(c*x)]))/(16* 
d^2*(Sqrt[-d]*Sqrt[e] - d/x)) - (Sqrt[e]*(a + b*ArcSin[1/(c*x)]))/(16*(-d) 
^(3/2)*(Sqrt[-d]*Sqrt[e] + d/x)^2) + (5*(a + b*ArcSin[1/(c*x)]))/(16*d^2*( 
Sqrt[-d]*Sqrt[e] + d/x)) - (b*e*ArcTanh[(c^2*d - (Sqrt[-d]*Sqrt[e])/x)/(c* 
Sqrt[d]*Sqrt[c^2*d + e]*Sqrt[1 - 1/(c^2*x^2)])])/(16*d^(5/2)*(c^2*d + e)^( 
3/2)) + (5*b*ArcTanh[(c^2*d - (Sqrt[-d]*Sqrt[e])/x)/(c*Sqrt[d]*Sqrt[c^2*d 
+ e]*Sqrt[1 - 1/(c^2*x^2)])])/(16*d^(5/2)*Sqrt[c^2*d + e]) - (b*e*ArcTanh[ 
(c^2*d + (Sqrt[-d]*Sqrt[e])/x)/(c*Sqrt[d]*Sqrt[c^2*d + e]*Sqrt[1 - 1/(c^2* 
x^2)])])/(16*d^(5/2)*(c^2*d + e)^(3/2)) + (5*b*ArcTanh[(c^2*d + (Sqrt[-d]* 
Sqrt[e])/x)/(c*Sqrt[d]*Sqrt[c^2*d + e]*Sqrt[1 - 1/(c^2*x^2)])])/(16*d^(5/2 
)*Sqrt[c^2*d + e]) - (3*(a + b*ArcSin[1/(c*x)])*Log[1 - (I*c*Sqrt[-d]*E^(I 
*ArcSin[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(16*(-d)^(5/2)*Sqrt[e]) + 
 (3*(a + b*ArcSin[1/(c*x)])*Log[1 + (I*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/( 
Sqrt[e] - Sqrt[c^2*d + e])])/(16*(-d)^(5/2)*Sqrt[e]) - (3*(a + b*ArcSin[1/ 
(c*x)])*Log[1 - (I*c*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d 
 + e])])/(16*(-d)^(5/2)*Sqrt[e]) + (3*(a + b*ArcSin[1/(c*x)])*Log[1 + (I*c 
*Sqrt[-d]*E^(I*ArcSin[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(16*(-d)...
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5232
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSin[c*x])^n, ( 
f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d + 
 e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 5754
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_.), 
x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcSin[x/c])^n/x^(2*(p + 1))) 
, x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && IntegerQ[p]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 145.07 (sec) , antiderivative size = 1798, normalized size of antiderivative = 1.59

method result size
parts \(\text {Expression too large to display}\) \(1798\)
derivativedivides \(\text {Expression too large to display}\) \(1823\)
default \(\text {Expression too large to display}\) \(1823\)

Input:

int((a+b*arccsc(c*x))/(e*x^2+d)^3,x,method=_RETURNVERBOSE)
 

Output:

1/4*a*x/d/(e*x^2+d)^2+3/8*a/d^2*x/(e*x^2+d)+3/8*a/d^2/(d*e)^(1/2)*arctan(e 
*x/(d*e)^(1/2))+b/c*(1/8*x*c^3*(5*d^2*c^4*arccsc(c*x)+3*c^4*d*e*arccsc(c*x 
)*x^2-((c^2*x^2-1)/c^2/x^2)^(1/2)*c^3*d*e*x-((c^2*x^2-1)/c^2/x^2)^(1/2)*e^ 
2*c^3*x^3+5*c^2*d*e*arccsc(c*x)+3*e^2*arccsc(c*x)*c^2*x^2)/d^2/(c^2*d+e)/( 
c^2*e*x^2+c^2*d)^2-3/16/d/(c^2*d+e)*c^4*sum(1/_R1/(_R1^2*c^2*d-c^2*d-2*e)* 
(I*arccsc(c*x)*ln((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-I/c/x-(1 
-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(-2*c^2*d-4*e)*_Z^2+c^2*d)) 
-3/16/d^2/(c^2*d+e)*c^2*e*sum(_R1/(_R1^2*c^2*d-c^2*d-2*e)*(I*arccsc(c*x)*l 
n((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-I/c/x-(1-1/c^2/x^2)^(1/2 
))/_R1)),_R1=RootOf(c^2*d*_Z^4+(-2*c^2*d-4*e)*_Z^2+c^2*d))-3/16/d/(c^2*d+e 
)*c^4*sum(_R1/(_R1^2*c^2*d-c^2*d-2*e)*(I*arccsc(c*x)*ln((_R1-I/c/x-(1-1/c^ 
2/x^2)^(1/2))/_R1)+dilog((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf( 
c^2*d*_Z^4+(-2*c^2*d-4*e)*_Z^2+c^2*d))+1/2*(-(c^2*d-2*(e*(c^2*d+e))^(1/2)+ 
2*e)*d)^(1/2)*(c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*e*arctan(c*d*(I/c/x+(1-1/c 
^2/x^2)^(1/2))/((-c^2*d+2*(e*(c^2*d+e))^(1/2)-2*e)*d)^(1/2))/c^3/d^5/(c^2* 
d+e)-1/2*(-(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2)*((e*(c^2*d+e))^(1/2) 
*c^2*d+2*c^2*d*e+2*(e*(c^2*d+e))^(1/2)*e+2*e^2)*e*arctan(c*d*(I/c/x+(1-1/c 
^2/x^2)^(1/2))/((-c^2*d+2*(e*(c^2*d+e))^(1/2)-2*e)*d)^(1/2))/d^5/(c^2*d+e) 
^2/c^3+5/8*(-(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2)*(c^2*d+2*(e*(c^2*d 
+e))^(1/2)+2*e)*arctan(c*d*(I/c/x+(1-1/c^2/x^2)^(1/2))/((-c^2*d+2*(e*(c...
 

Fricas [F]

\[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\int { \frac {b \operatorname {arccsc}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{3}} \,d x } \] Input:

integrate((a+b*arccsc(c*x))/(e*x^2+d)^3,x, algorithm="fricas")
 

Output:

integral((b*arccsc(c*x) + a)/(e^3*x^6 + 3*d*e^2*x^4 + 3*d^2*e*x^2 + d^3), 
x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\text {Timed out} \] Input:

integrate((a+b*acsc(c*x))/(e*x**2+d)**3,x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((a+b*arccsc(c*x))/(e*x^2+d)^3,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F(-2)]

Exception generated. \[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate((a+b*arccsc(c*x))/(e*x^2+d)^3,x, algorithm="giac")
 

Output:

Exception raised: RuntimeError >> an error occurred running a Giac command 
:INPUT:sage2OUTPUT:sym2poly/r2sym(const gen & e,const index_m & i,const ve 
cteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\int \frac {a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )}{{\left (e\,x^2+d\right )}^3} \,d x \] Input:

int((a + b*asin(1/(c*x)))/(d + e*x^2)^3,x)
 

Output:

int((a + b*asin(1/(c*x)))/(d + e*x^2)^3, x)
 

Reduce [F]

\[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^3} \, dx=\frac {3 \sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a \,d^{2}+6 \sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a d e \,x^{2}+3 \sqrt {e}\, \sqrt {d}\, \mathit {atan} \left (\frac {e x}{\sqrt {e}\, \sqrt {d}}\right ) a \,e^{2} x^{4}+8 \left (\int \frac {\mathit {acsc} \left (c x \right )}{e^{3} x^{6}+3 d \,e^{2} x^{4}+3 d^{2} e \,x^{2}+d^{3}}d x \right ) b \,d^{5} e +16 \left (\int \frac {\mathit {acsc} \left (c x \right )}{e^{3} x^{6}+3 d \,e^{2} x^{4}+3 d^{2} e \,x^{2}+d^{3}}d x \right ) b \,d^{4} e^{2} x^{2}+8 \left (\int \frac {\mathit {acsc} \left (c x \right )}{e^{3} x^{6}+3 d \,e^{2} x^{4}+3 d^{2} e \,x^{2}+d^{3}}d x \right ) b \,d^{3} e^{3} x^{4}+5 a \,d^{2} e x +3 a d \,e^{2} x^{3}}{8 d^{3} e \left (e^{2} x^{4}+2 d e \,x^{2}+d^{2}\right )} \] Input:

int((a+b*acsc(c*x))/(e*x^2+d)^3,x)
                                                                                    
                                                                                    
 

Output:

(3*sqrt(e)*sqrt(d)*atan((e*x)/(sqrt(e)*sqrt(d)))*a*d**2 + 6*sqrt(e)*sqrt(d 
)*atan((e*x)/(sqrt(e)*sqrt(d)))*a*d*e*x**2 + 3*sqrt(e)*sqrt(d)*atan((e*x)/ 
(sqrt(e)*sqrt(d)))*a*e**2*x**4 + 8*int(acsc(c*x)/(d**3 + 3*d**2*e*x**2 + 3 
*d*e**2*x**4 + e**3*x**6),x)*b*d**5*e + 16*int(acsc(c*x)/(d**3 + 3*d**2*e* 
x**2 + 3*d*e**2*x**4 + e**3*x**6),x)*b*d**4*e**2*x**2 + 8*int(acsc(c*x)/(d 
**3 + 3*d**2*e*x**2 + 3*d*e**2*x**4 + e**3*x**6),x)*b*d**3*e**3*x**4 + 5*a 
*d**2*e*x + 3*a*d*e**2*x**3)/(8*d**3*e*(d**2 + 2*d*e*x**2 + e**2*x**4))