\(\int \frac {\sinh (c+d x) \tanh ^2(c+d x)}{a+b \sinh (c+d x)} \, dx\) [414]

Optimal result
Mathematica [A] (verified)
Rubi [C] (warning: unable to verify)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 121 \[ \int \frac {\sinh (c+d x) \tanh ^2(c+d x)}{a+b \sinh (c+d x)} \, dx=\frac {a^2 x}{b \left (a^2+b^2\right )}+\frac {b x}{a^2+b^2}+\frac {2 a^3 \text {arctanh}\left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2+b^2}}\right )}{b \left (a^2+b^2\right )^{3/2} d}+\frac {a \text {sech}(c+d x)}{\left (a^2+b^2\right ) d}-\frac {b \tanh (c+d x)}{\left (a^2+b^2\right ) d} \] Output:

a^2*x/b/(a^2+b^2)+b*x/(a^2+b^2)+2*a^3*arctanh((b-a*tanh(1/2*d*x+1/2*c))/(a 
^2+b^2)^(1/2))/b/(a^2+b^2)^(3/2)/d+a*sech(d*x+c)/(a^2+b^2)/d-b*tanh(d*x+c) 
/(a^2+b^2)/d
 

Mathematica [A] (verified)

Time = 0.76 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.79 \[ \int \frac {\sinh (c+d x) \tanh ^2(c+d x)}{a+b \sinh (c+d x)} \, dx=\frac {\frac {c+d x}{b}+\frac {2 a^3 \arctan \left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2-b^2}}\right )}{b \left (-a^2-b^2\right )^{3/2}}+\frac {\text {sech}(c+d x) (a-b \sinh (c+d x))}{a^2+b^2}}{d} \] Input:

Integrate[(Sinh[c + d*x]*Tanh[c + d*x]^2)/(a + b*Sinh[c + d*x]),x]
 

Output:

((c + d*x)/b + (2*a^3*ArcTan[(b - a*Tanh[(c + d*x)/2])/Sqrt[-a^2 - b^2]])/ 
(b*(-a^2 - b^2)^(3/2)) + (Sech[c + d*x]*(a - b*Sinh[c + d*x]))/(a^2 + b^2) 
)/d
 

Rubi [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 0.83 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.05, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.630, Rules used = {3042, 26, 3381, 25, 26, 3042, 25, 26, 3086, 24, 3214, 3042, 3139, 1083, 217, 3954, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sinh (c+d x) \tanh ^2(c+d x)}{a+b \sinh (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {i \sin (i c+i d x)^3}{\cos (i c+i d x)^2 (a-i b \sin (i c+i d x))}dx\)

\(\Big \downarrow \) 26

\(\displaystyle i \int \frac {\sin (i c+i d x)^3}{\cos (i c+i d x)^2 (a-i b \sin (i c+i d x))}dx\)

\(\Big \downarrow \) 3381

\(\displaystyle i \left (-\frac {a^2 \int \frac {i \sinh (c+d x)}{a+b \sinh (c+d x)}dx}{a^2+b^2}+\frac {i b \int -\tanh ^2(c+d x)dx}{a^2+b^2}+\frac {a \int i \text {sech}(c+d x) \tanh (c+d x)dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle i \left (-\frac {a^2 \int \frac {i \sinh (c+d x)}{a+b \sinh (c+d x)}dx}{a^2+b^2}-\frac {i b \int \tanh ^2(c+d x)dx}{a^2+b^2}+\frac {a \int i \text {sech}(c+d x) \tanh (c+d x)dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 26

\(\displaystyle i \left (-\frac {i a^2 \int \frac {\sinh (c+d x)}{a+b \sinh (c+d x)}dx}{a^2+b^2}-\frac {i b \int \tanh ^2(c+d x)dx}{a^2+b^2}+\frac {i a \int \text {sech}(c+d x) \tanh (c+d x)dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle i \left (-\frac {i a^2 \int -\frac {i \sin (i c+i d x)}{a-i b \sin (i c+i d x)}dx}{a^2+b^2}-\frac {i b \int -\tan (i c+i d x)^2dx}{a^2+b^2}+\frac {i a \int -i \sec (i c+i d x) \tan (i c+i d x)dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle i \left (-\frac {i a^2 \int -\frac {i \sin (i c+i d x)}{a-i b \sin (i c+i d x)}dx}{a^2+b^2}+\frac {i b \int \tan (i c+i d x)^2dx}{a^2+b^2}+\frac {i a \int -i \sec (i c+i d x) \tan (i c+i d x)dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 26

\(\displaystyle i \left (-\frac {a^2 \int \frac {\sin (i c+i d x)}{a-i b \sin (i c+i d x)}dx}{a^2+b^2}+\frac {i b \int \tan (i c+i d x)^2dx}{a^2+b^2}+\frac {a \int \sec (i c+i d x) \tan (i c+i d x)dx}{a^2+b^2}\right )\)

\(\Big \downarrow \) 3086

\(\displaystyle i \left (-\frac {a^2 \int \frac {\sin (i c+i d x)}{a-i b \sin (i c+i d x)}dx}{a^2+b^2}+\frac {i b \int \tan (i c+i d x)^2dx}{a^2+b^2}-\frac {i a \int 1d\text {sech}(c+d x)}{d \left (a^2+b^2\right )}\right )\)

\(\Big \downarrow \) 24

\(\displaystyle i \left (-\frac {a^2 \int \frac {\sin (i c+i d x)}{a-i b \sin (i c+i d x)}dx}{a^2+b^2}+\frac {i b \int \tan (i c+i d x)^2dx}{a^2+b^2}-\frac {i a \text {sech}(c+d x)}{d \left (a^2+b^2\right )}\right )\)

\(\Big \downarrow \) 3214

\(\displaystyle i \left (\frac {i b \int \tan (i c+i d x)^2dx}{a^2+b^2}-\frac {a^2 \left (\frac {i x}{b}-\frac {i a \int \frac {1}{a+b \sinh (c+d x)}dx}{b}\right )}{a^2+b^2}-\frac {i a \text {sech}(c+d x)}{d \left (a^2+b^2\right )}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle i \left (-\frac {a^2 \left (\frac {i x}{b}-\frac {i a \int \frac {1}{a-i b \sin (i c+i d x)}dx}{b}\right )}{a^2+b^2}+\frac {i b \int \tan (i c+i d x)^2dx}{a^2+b^2}-\frac {i a \text {sech}(c+d x)}{d \left (a^2+b^2\right )}\right )\)

\(\Big \downarrow \) 3139

\(\displaystyle i \left (\frac {i b \int \tan (i c+i d x)^2dx}{a^2+b^2}-\frac {a^2 \left (\frac {i x}{b}-\frac {2 a \int \frac {1}{-a \tanh ^2\left (\frac {1}{2} (c+d x)\right )+2 b \tanh \left (\frac {1}{2} (c+d x)\right )+a}d\left (i \tanh \left (\frac {1}{2} (c+d x)\right )\right )}{b d}\right )}{a^2+b^2}-\frac {i a \text {sech}(c+d x)}{d \left (a^2+b^2\right )}\right )\)

\(\Big \downarrow \) 1083

\(\displaystyle i \left (\frac {i b \int \tan (i c+i d x)^2dx}{a^2+b^2}-\frac {a^2 \left (\frac {4 a \int \frac {1}{\tanh ^2\left (\frac {1}{2} (c+d x)\right )-4 \left (a^2+b^2\right )}d\left (2 i a \tanh \left (\frac {1}{2} (c+d x)\right )-2 i b\right )}{b d}+\frac {i x}{b}\right )}{a^2+b^2}-\frac {i a \text {sech}(c+d x)}{d \left (a^2+b^2\right )}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle i \left (\frac {i b \int \tan (i c+i d x)^2dx}{a^2+b^2}-\frac {a^2 \left (\frac {i x}{b}-\frac {2 i a \text {arctanh}\left (\frac {\tanh \left (\frac {1}{2} (c+d x)\right )}{2 \sqrt {a^2+b^2}}\right )}{b d \sqrt {a^2+b^2}}\right )}{a^2+b^2}-\frac {i a \text {sech}(c+d x)}{d \left (a^2+b^2\right )}\right )\)

\(\Big \downarrow \) 3954

\(\displaystyle i \left (\frac {i b \left (\frac {\tanh (c+d x)}{d}-\int 1dx\right )}{a^2+b^2}-\frac {a^2 \left (\frac {i x}{b}-\frac {2 i a \text {arctanh}\left (\frac {\tanh \left (\frac {1}{2} (c+d x)\right )}{2 \sqrt {a^2+b^2}}\right )}{b d \sqrt {a^2+b^2}}\right )}{a^2+b^2}-\frac {i a \text {sech}(c+d x)}{d \left (a^2+b^2\right )}\right )\)

\(\Big \downarrow \) 24

\(\displaystyle i \left (-\frac {a^2 \left (\frac {i x}{b}-\frac {2 i a \text {arctanh}\left (\frac {\tanh \left (\frac {1}{2} (c+d x)\right )}{2 \sqrt {a^2+b^2}}\right )}{b d \sqrt {a^2+b^2}}\right )}{a^2+b^2}+\frac {i b \left (\frac {\tanh (c+d x)}{d}-x\right )}{a^2+b^2}-\frac {i a \text {sech}(c+d x)}{d \left (a^2+b^2\right )}\right )\)

Input:

Int[(Sinh[c + d*x]*Tanh[c + d*x]^2)/(a + b*Sinh[c + d*x]),x]
 

Output:

I*(-((a^2*((I*x)/b - ((2*I)*a*ArcTanh[Tanh[(c + d*x)/2]/(2*Sqrt[a^2 + b^2] 
)])/(b*Sqrt[a^2 + b^2]*d)))/(a^2 + b^2)) - (I*a*Sech[c + d*x])/((a^2 + b^2 
)*d) + (I*b*(-x + Tanh[c + d*x]/d))/(a^2 + b^2))
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3086
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_.), x_Symbol] :> Simp[a/f   Subst[Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2 
), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2 
] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])
 

rule 3139
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = Fre 
eFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + 2*b*e*x + a 
*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] && NeQ 
[a^2 - b^2, 0]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3381
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^( 
n_))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a*(d^2/(a^2 
- b^2))   Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 2), x], x] + (-Simp[ 
b*(d/(a^2 - b^2))   Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 1), x], x] 
 - Simp[a^2*(d^2/(g^2*(a^2 - b^2)))   Int[(g*Cos[e + f*x])^(p + 2)*((d*Sin[ 
e + f*x])^(n - 2)/(a + b*Sin[e + f*x])), x], x]) /; FreeQ[{a, b, d, e, f, g 
}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[p, -1] && GtQ[n, 1 
]
 

rule 3954
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((b*Tan[c + d 
*x])^(n - 1)/(d*(n - 1))), x] - Simp[b^2   Int[(b*Tan[c + d*x])^(n - 2), x] 
, x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]
 
Maple [A] (verified)

Time = 0.42 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.03

method result size
derivativedivides \(\frac {-\frac {2 \left (b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-a \right )}{\left (a^{2}+b^{2}\right ) \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}-\frac {2 a^{3} \operatorname {arctanh}\left (\frac {2 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-2 b}{2 \sqrt {a^{2}+b^{2}}}\right )}{b \left (a^{2}+b^{2}\right )^{\frac {3}{2}}}+\frac {\ln \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b}-\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{b}}{d}\) \(125\)
default \(\frac {-\frac {2 \left (b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-a \right )}{\left (a^{2}+b^{2}\right ) \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}-\frac {2 a^{3} \operatorname {arctanh}\left (\frac {2 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-2 b}{2 \sqrt {a^{2}+b^{2}}}\right )}{b \left (a^{2}+b^{2}\right )^{\frac {3}{2}}}+\frac {\ln \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b}-\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{b}}{d}\) \(125\)
risch \(\frac {x}{b}+\frac {2 a \,{\mathrm e}^{d x +c}+2 b}{d \left (a^{2}+b^{2}\right ) \left (1+{\mathrm e}^{2 d x +2 c}\right )}+\frac {a^{3} \ln \left ({\mathrm e}^{d x +c}+\frac {a \left (a^{2}+b^{2}\right )^{\frac {3}{2}}+a^{4}+2 a^{2} b^{2}+b^{4}}{b \left (a^{2}+b^{2}\right )^{\frac {3}{2}}}\right )}{\left (a^{2}+b^{2}\right )^{\frac {3}{2}} d b}-\frac {a^{3} \ln \left ({\mathrm e}^{d x +c}+\frac {a \left (a^{2}+b^{2}\right )^{\frac {3}{2}}-a^{4}-2 a^{2} b^{2}-b^{4}}{b \left (a^{2}+b^{2}\right )^{\frac {3}{2}}}\right )}{\left (a^{2}+b^{2}\right )^{\frac {3}{2}} d b}\) \(181\)

Input:

int(sinh(d*x+c)*tanh(d*x+c)^2/(a+b*sinh(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

1/d*(-2/(a^2+b^2)*(b*tanh(1/2*d*x+1/2*c)-a)/(1+tanh(1/2*d*x+1/2*c)^2)-2/b* 
a^3/(a^2+b^2)^(3/2)*arctanh(1/2*(2*a*tanh(1/2*d*x+1/2*c)-2*b)/(a^2+b^2)^(1 
/2))+1/b*ln(1+tanh(1/2*d*x+1/2*c))-1/b*ln(tanh(1/2*d*x+1/2*c)-1))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 459 vs. \(2 (118) = 236\).

Time = 0.09 (sec) , antiderivative size = 459, normalized size of antiderivative = 3.79 \[ \int \frac {\sinh (c+d x) \tanh ^2(c+d x)}{a+b \sinh (c+d x)} \, dx=\frac {{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} d x \cosh \left (d x + c\right )^{2} + {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} d x \sinh \left (d x + c\right )^{2} + 2 \, a^{2} b^{2} + 2 \, b^{4} + {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} d x + {\left (a^{3} \cosh \left (d x + c\right )^{2} + 2 \, a^{3} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + a^{3} \sinh \left (d x + c\right )^{2} + a^{3}\right )} \sqrt {a^{2} + b^{2}} \log \left (\frac {b^{2} \cosh \left (d x + c\right )^{2} + b^{2} \sinh \left (d x + c\right )^{2} + 2 \, a b \cosh \left (d x + c\right ) + 2 \, a^{2} + b^{2} + 2 \, {\left (b^{2} \cosh \left (d x + c\right ) + a b\right )} \sinh \left (d x + c\right ) + 2 \, \sqrt {a^{2} + b^{2}} {\left (b \cosh \left (d x + c\right ) + b \sinh \left (d x + c\right ) + a\right )}}{b \cosh \left (d x + c\right )^{2} + b \sinh \left (d x + c\right )^{2} + 2 \, a \cosh \left (d x + c\right ) + 2 \, {\left (b \cosh \left (d x + c\right ) + a\right )} \sinh \left (d x + c\right ) - b}\right ) + 2 \, {\left (a^{3} b + a b^{3}\right )} \cosh \left (d x + c\right ) + 2 \, {\left (a^{3} b + a b^{3} + {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} d x \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )}{{\left (a^{4} b + 2 \, a^{2} b^{3} + b^{5}\right )} d \cosh \left (d x + c\right )^{2} + 2 \, {\left (a^{4} b + 2 \, a^{2} b^{3} + b^{5}\right )} d \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a^{4} b + 2 \, a^{2} b^{3} + b^{5}\right )} d \sinh \left (d x + c\right )^{2} + {\left (a^{4} b + 2 \, a^{2} b^{3} + b^{5}\right )} d} \] Input:

integrate(sinh(d*x+c)*tanh(d*x+c)^2/(a+b*sinh(d*x+c)),x, algorithm="fricas 
")
 

Output:

((a^4 + 2*a^2*b^2 + b^4)*d*x*cosh(d*x + c)^2 + (a^4 + 2*a^2*b^2 + b^4)*d*x 
*sinh(d*x + c)^2 + 2*a^2*b^2 + 2*b^4 + (a^4 + 2*a^2*b^2 + b^4)*d*x + (a^3* 
cosh(d*x + c)^2 + 2*a^3*cosh(d*x + c)*sinh(d*x + c) + a^3*sinh(d*x + c)^2 
+ a^3)*sqrt(a^2 + b^2)*log((b^2*cosh(d*x + c)^2 + b^2*sinh(d*x + c)^2 + 2* 
a*b*cosh(d*x + c) + 2*a^2 + b^2 + 2*(b^2*cosh(d*x + c) + a*b)*sinh(d*x + c 
) + 2*sqrt(a^2 + b^2)*(b*cosh(d*x + c) + b*sinh(d*x + c) + a))/(b*cosh(d*x 
 + c)^2 + b*sinh(d*x + c)^2 + 2*a*cosh(d*x + c) + 2*(b*cosh(d*x + c) + a)* 
sinh(d*x + c) - b)) + 2*(a^3*b + a*b^3)*cosh(d*x + c) + 2*(a^3*b + a*b^3 + 
 (a^4 + 2*a^2*b^2 + b^4)*d*x*cosh(d*x + c))*sinh(d*x + c))/((a^4*b + 2*a^2 
*b^3 + b^5)*d*cosh(d*x + c)^2 + 2*(a^4*b + 2*a^2*b^3 + b^5)*d*cosh(d*x + c 
)*sinh(d*x + c) + (a^4*b + 2*a^2*b^3 + b^5)*d*sinh(d*x + c)^2 + (a^4*b + 2 
*a^2*b^3 + b^5)*d)
 

Sympy [F]

\[ \int \frac {\sinh (c+d x) \tanh ^2(c+d x)}{a+b \sinh (c+d x)} \, dx=\int \frac {\sinh {\left (c + d x \right )} \tanh ^{2}{\left (c + d x \right )}}{a + b \sinh {\left (c + d x \right )}}\, dx \] Input:

integrate(sinh(d*x+c)*tanh(d*x+c)**2/(a+b*sinh(d*x+c)),x)
 

Output:

Integral(sinh(c + d*x)*tanh(c + d*x)**2/(a + b*sinh(c + d*x)), x)
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.17 \[ \int \frac {\sinh (c+d x) \tanh ^2(c+d x)}{a+b \sinh (c+d x)} \, dx=-\frac {a^{3} \log \left (\frac {b e^{\left (-d x - c\right )} - a - \sqrt {a^{2} + b^{2}}}{b e^{\left (-d x - c\right )} - a + \sqrt {a^{2} + b^{2}}}\right )}{{\left (a^{2} b + b^{3}\right )} \sqrt {a^{2} + b^{2}} d} + \frac {2 \, {\left (a e^{\left (-d x - c\right )} - b\right )}}{{\left (a^{2} + b^{2} + {\left (a^{2} + b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )}\right )} d} + \frac {d x + c}{b d} \] Input:

integrate(sinh(d*x+c)*tanh(d*x+c)^2/(a+b*sinh(d*x+c)),x, algorithm="maxima 
")
 

Output:

-a^3*log((b*e^(-d*x - c) - a - sqrt(a^2 + b^2))/(b*e^(-d*x - c) - a + sqrt 
(a^2 + b^2)))/((a^2*b + b^3)*sqrt(a^2 + b^2)*d) + 2*(a*e^(-d*x - c) - b)/( 
(a^2 + b^2 + (a^2 + b^2)*e^(-2*d*x - 2*c))*d) + (d*x + c)/(b*d)
 

Giac [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.06 \[ \int \frac {\sinh (c+d x) \tanh ^2(c+d x)}{a+b \sinh (c+d x)} \, dx=-\frac {\frac {a^{3} \log \left (\frac {{\left | 2 \, b e^{\left (d x + c\right )} + 2 \, a - 2 \, \sqrt {a^{2} + b^{2}} \right |}}{{\left | 2 \, b e^{\left (d x + c\right )} + 2 \, a + 2 \, \sqrt {a^{2} + b^{2}} \right |}}\right )}{{\left (a^{2} b + b^{3}\right )} \sqrt {a^{2} + b^{2}}} - \frac {d x + c}{b} - \frac {2 \, {\left (a e^{\left (d x + c\right )} + b\right )}}{{\left (a^{2} + b^{2}\right )} {\left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right )}}}{d} \] Input:

integrate(sinh(d*x+c)*tanh(d*x+c)^2/(a+b*sinh(d*x+c)),x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

-(a^3*log(abs(2*b*e^(d*x + c) + 2*a - 2*sqrt(a^2 + b^2))/abs(2*b*e^(d*x + 
c) + 2*a + 2*sqrt(a^2 + b^2)))/((a^2*b + b^3)*sqrt(a^2 + b^2)) - (d*x + c) 
/b - 2*(a*e^(d*x + c) + b)/((a^2 + b^2)*(e^(2*d*x + 2*c) + 1)))/d
 

Mupad [B] (verification not implemented)

Time = 3.15 (sec) , antiderivative size = 468, normalized size of antiderivative = 3.87 \[ \int \frac {\sinh (c+d x) \tanh ^2(c+d x)}{a+b \sinh (c+d x)} \, dx=\frac {\frac {2\,b}{d\,\left (a^2+b^2\right )}+\frac {2\,a\,{\mathrm {e}}^{c+d\,x}}{d\,\left (a^2+b^2\right )}}{{\mathrm {e}}^{2\,c+2\,d\,x}+1}+\frac {x}{b}+\frac {2\,\mathrm {atan}\left (\left ({\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c\,\left (\frac {2\,a^3}{b^3\,d\,\left (a^2\,b+b^3\right )\,\sqrt {a^6}\,\left (a^2+b^2\right )}+\frac {2\,\left (a\,b^3\,d\,\sqrt {a^6}+a^3\,b\,d\,\sqrt {a^6}\right )}{a^2\,b^2\,\left (a^2\,b+b^3\right )\,\sqrt {-b^2\,d^2\,{\left (a^2+b^2\right )}^3}\,\sqrt {-a^6\,b^2\,d^2-3\,a^4\,b^4\,d^2-3\,a^2\,b^6\,d^2-b^8\,d^2}}\right )-\frac {2\,\left (b^4\,d\,\sqrt {a^6}+a^2\,b^2\,d\,\sqrt {a^6}\right )}{a^2\,b^2\,\left (a^2\,b+b^3\right )\,\sqrt {-b^2\,d^2\,{\left (a^2+b^2\right )}^3}\,\sqrt {-a^6\,b^2\,d^2-3\,a^4\,b^4\,d^2-3\,a^2\,b^6\,d^2-b^8\,d^2}}\right )\,\left (\frac {b^4\,\sqrt {-a^6\,b^2\,d^2-3\,a^4\,b^4\,d^2-3\,a^2\,b^6\,d^2-b^8\,d^2}}{2}+\frac {a^2\,b^2\,\sqrt {-a^6\,b^2\,d^2-3\,a^4\,b^4\,d^2-3\,a^2\,b^6\,d^2-b^8\,d^2}}{2}\right )\right )\,\sqrt {a^6}}{\sqrt {-a^6\,b^2\,d^2-3\,a^4\,b^4\,d^2-3\,a^2\,b^6\,d^2-b^8\,d^2}} \] Input:

int((sinh(c + d*x)*tanh(c + d*x)^2)/(a + b*sinh(c + d*x)),x)
 

Output:

((2*b)/(d*(a^2 + b^2)) + (2*a*exp(c + d*x))/(d*(a^2 + b^2)))/(exp(2*c + 2* 
d*x) + 1) + x/b + (2*atan((exp(d*x)*exp(c)*((2*a^3)/(b^3*d*(a^2*b + b^3)*( 
a^6)^(1/2)*(a^2 + b^2)) + (2*(a*b^3*d*(a^6)^(1/2) + a^3*b*d*(a^6)^(1/2)))/ 
(a^2*b^2*(a^2*b + b^3)*(-b^2*d^2*(a^2 + b^2)^3)^(1/2)*(- b^8*d^2 - 3*a^2*b 
^6*d^2 - 3*a^4*b^4*d^2 - a^6*b^2*d^2)^(1/2))) - (2*(b^4*d*(a^6)^(1/2) + a^ 
2*b^2*d*(a^6)^(1/2)))/(a^2*b^2*(a^2*b + b^3)*(-b^2*d^2*(a^2 + b^2)^3)^(1/2 
)*(- b^8*d^2 - 3*a^2*b^6*d^2 - 3*a^4*b^4*d^2 - a^6*b^2*d^2)^(1/2)))*((b^4* 
(- b^8*d^2 - 3*a^2*b^6*d^2 - 3*a^4*b^4*d^2 - a^6*b^2*d^2)^(1/2))/2 + (a^2* 
b^2*(- b^8*d^2 - 3*a^2*b^6*d^2 - 3*a^4*b^4*d^2 - a^6*b^2*d^2)^(1/2))/2))*( 
a^6)^(1/2))/(- b^8*d^2 - 3*a^2*b^6*d^2 - 3*a^4*b^4*d^2 - a^6*b^2*d^2)^(1/2 
)
 

Reduce [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 396, normalized size of antiderivative = 3.27 \[ \int \frac {\sinh (c+d x) \tanh ^2(c+d x)}{a+b \sinh (c+d x)} \, dx=\frac {-2 e^{2 d x +2 c} \sqrt {a^{2}+b^{2}}\, \mathit {atan} \left (\frac {e^{d x +c} b i +a i}{\sqrt {a^{2}+b^{2}}}\right ) a^{3} i -2 \sqrt {a^{2}+b^{2}}\, \mathit {atan} \left (\frac {e^{d x +c} b i +a i}{\sqrt {a^{2}+b^{2}}}\right ) a^{3} i -e^{2 d x +2 c} \tanh \left (d x +c \right ) a^{4}-2 e^{2 d x +2 c} \tanh \left (d x +c \right ) a^{2} b^{2}-e^{2 d x +2 c} \tanh \left (d x +c \right ) b^{4}+e^{2 d x +2 c} a^{4} d x +2 e^{2 d x +2 c} a^{4}+2 e^{2 d x +2 c} a^{2} b^{2} d x +2 e^{2 d x +2 c} a^{2} b^{2}+e^{2 d x +2 c} b^{4} d x +2 e^{d x +c} a^{3} b +2 e^{d x +c} a \,b^{3}-\tanh \left (d x +c \right ) a^{4}-2 \tanh \left (d x +c \right ) a^{2} b^{2}-\tanh \left (d x +c \right ) b^{4}+a^{4} d x +2 a^{2} b^{2} d x +b^{4} d x}{b d \left (e^{2 d x +2 c} a^{4}+2 e^{2 d x +2 c} a^{2} b^{2}+e^{2 d x +2 c} b^{4}+a^{4}+2 a^{2} b^{2}+b^{4}\right )} \] Input:

int(sinh(d*x+c)*tanh(d*x+c)^2/(a+b*sinh(d*x+c)),x)
 

Output:

( - 2*e**(2*c + 2*d*x)*sqrt(a**2 + b**2)*atan((e**(c + d*x)*b*i + a*i)/sqr 
t(a**2 + b**2))*a**3*i - 2*sqrt(a**2 + b**2)*atan((e**(c + d*x)*b*i + a*i) 
/sqrt(a**2 + b**2))*a**3*i - e**(2*c + 2*d*x)*tanh(c + d*x)*a**4 - 2*e**(2 
*c + 2*d*x)*tanh(c + d*x)*a**2*b**2 - e**(2*c + 2*d*x)*tanh(c + d*x)*b**4 
+ e**(2*c + 2*d*x)*a**4*d*x + 2*e**(2*c + 2*d*x)*a**4 + 2*e**(2*c + 2*d*x) 
*a**2*b**2*d*x + 2*e**(2*c + 2*d*x)*a**2*b**2 + e**(2*c + 2*d*x)*b**4*d*x 
+ 2*e**(c + d*x)*a**3*b + 2*e**(c + d*x)*a*b**3 - tanh(c + d*x)*a**4 - 2*t 
anh(c + d*x)*a**2*b**2 - tanh(c + d*x)*b**4 + a**4*d*x + 2*a**2*b**2*d*x + 
 b**4*d*x)/(b*d*(e**(2*c + 2*d*x)*a**4 + 2*e**(2*c + 2*d*x)*a**2*b**2 + e* 
*(2*c + 2*d*x)*b**4 + a**4 + 2*a**2*b**2 + b**4))