\(\int \sqrt {c+d x} \sinh (a+b x) \, dx\) [40]

Optimal result
Mathematica [A] (verified)
Rubi [C] (verified)
Maple [F]
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 123 \[ \int \sqrt {c+d x} \sinh (a+b x) \, dx=\frac {\sqrt {c+d x} \cosh (a+b x)}{b}-\frac {\sqrt {d} e^{-a+\frac {b c}{d}} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{4 b^{3/2}}-\frac {\sqrt {d} e^{a-\frac {b c}{d}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{4 b^{3/2}} \] Output:

(d*x+c)^(1/2)*cosh(b*x+a)/b-1/4*d^(1/2)*exp(-a+b*c/d)*Pi^(1/2)*erf(b^(1/2) 
*(d*x+c)^(1/2)/d^(1/2))/b^(3/2)-1/4*d^(1/2)*exp(a-b*c/d)*Pi^(1/2)*erfi(b^( 
1/2)*(d*x+c)^(1/2)/d^(1/2))/b^(3/2)
 

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.85 \[ \int \sqrt {c+d x} \sinh (a+b x) \, dx=\frac {e^{-a-\frac {b c}{d}} \sqrt {c+d x} \left (\frac {e^{2 a} \Gamma \left (\frac {3}{2},-\frac {b (c+d x)}{d}\right )}{\sqrt {-\frac {b (c+d x)}{d}}}+\frac {e^{\frac {2 b c}{d}} \Gamma \left (\frac {3}{2},\frac {b (c+d x)}{d}\right )}{\sqrt {\frac {b (c+d x)}{d}}}\right )}{2 b} \] Input:

Integrate[Sqrt[c + d*x]*Sinh[a + b*x],x]
 

Output:

(E^(-a - (b*c)/d)*Sqrt[c + d*x]*((E^(2*a)*Gamma[3/2, -((b*(c + d*x))/d)])/ 
Sqrt[-((b*(c + d*x))/d)] + (E^((2*b*c)/d)*Gamma[3/2, (b*(c + d*x))/d])/Sqr 
t[(b*(c + d*x))/d]))/(2*b)
 

Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.54 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.15, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.562, Rules used = {3042, 26, 3777, 3042, 3788, 26, 2611, 2633, 2634}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {c+d x} \sinh (a+b x) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -i \sqrt {c+d x} \sin (i a+i b x)dx\)

\(\Big \downarrow \) 26

\(\displaystyle -i \int \sqrt {c+d x} \sin (i a+i b x)dx\)

\(\Big \downarrow \) 3777

\(\displaystyle -i \left (\frac {i \sqrt {c+d x} \cosh (a+b x)}{b}-\frac {i d \int \frac {\cosh (a+b x)}{\sqrt {c+d x}}dx}{2 b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle -i \left (\frac {i \sqrt {c+d x} \cosh (a+b x)}{b}-\frac {i d \int \frac {\sin \left (i a+i b x+\frac {\pi }{2}\right )}{\sqrt {c+d x}}dx}{2 b}\right )\)

\(\Big \downarrow \) 3788

\(\displaystyle -i \left (\frac {i \sqrt {c+d x} \cosh (a+b x)}{b}-\frac {i d \left (\frac {1}{2} i \int -\frac {i e^{a+b x}}{\sqrt {c+d x}}dx-\frac {1}{2} i \int \frac {i e^{-a-b x}}{\sqrt {c+d x}}dx\right )}{2 b}\right )\)

\(\Big \downarrow \) 26

\(\displaystyle -i \left (\frac {i \sqrt {c+d x} \cosh (a+b x)}{b}-\frac {i d \left (\frac {1}{2} \int \frac {e^{-a-b x}}{\sqrt {c+d x}}dx+\frac {1}{2} \int \frac {e^{a+b x}}{\sqrt {c+d x}}dx\right )}{2 b}\right )\)

\(\Big \downarrow \) 2611

\(\displaystyle -i \left (\frac {i \sqrt {c+d x} \cosh (a+b x)}{b}-\frac {i d \left (\frac {\int e^{-a-\frac {b (c+d x)}{d}+\frac {b c}{d}}d\sqrt {c+d x}}{d}+\frac {\int e^{a+\frac {b (c+d x)}{d}-\frac {b c}{d}}d\sqrt {c+d x}}{d}\right )}{2 b}\right )\)

\(\Big \downarrow \) 2633

\(\displaystyle -i \left (\frac {i \sqrt {c+d x} \cosh (a+b x)}{b}-\frac {i d \left (\frac {\int e^{-a-\frac {b (c+d x)}{d}+\frac {b c}{d}}d\sqrt {c+d x}}{d}+\frac {\sqrt {\pi } e^{a-\frac {b c}{d}} \text {erfi}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}\right )}{2 b}\right )\)

\(\Big \downarrow \) 2634

\(\displaystyle -i \left (\frac {i \sqrt {c+d x} \cosh (a+b x)}{b}-\frac {i d \left (\frac {\sqrt {\pi } e^{\frac {b c}{d}-a} \text {erf}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}+\frac {\sqrt {\pi } e^{a-\frac {b c}{d}} \text {erfi}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}\right )}{2 b}\right )\)

Input:

Int[Sqrt[c + d*x]*Sinh[a + b*x],x]
 

Output:

(-I)*((I*Sqrt[c + d*x]*Cosh[a + b*x])/b - ((I/2)*d*((E^(-a + (b*c)/d)*Sqrt 
[Pi]*Erf[(Sqrt[b]*Sqrt[c + d*x])/Sqrt[d]])/(2*Sqrt[b]*Sqrt[d]) + (E^(a - ( 
b*c)/d)*Sqrt[Pi]*Erfi[(Sqrt[b]*Sqrt[c + d*x])/Sqrt[d]])/(2*Sqrt[b]*Sqrt[d] 
)))/b)
 

Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 2611
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] : 
> Simp[2/d   Subst[Int[F^(g*(e - c*(f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d 
*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]
 

rule 2633
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt 
[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{ 
F, a, b, c, d}, x] && PosQ[b]
 

rule 2634
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt 
[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F], 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; Fr 
eeQ[{F, a, b, c, d}, x] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3777
Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[( 
-(c + d*x)^m)*(Cos[e + f*x]/f), x] + Simp[d*(m/f)   Int[(c + d*x)^(m - 1)*C 
os[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]
 

rule 3788
Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol 
] :> Simp[I/2   Int[(c + d*x)^m/(E^(I*k*Pi)*E^(I*(e + f*x))), x], x] - Simp 
[I/2   Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e 
, f, m}, x] && IntegerQ[2*k]
 
Maple [F]

\[\int \sqrt {d x +c}\, \sinh \left (b x +a \right )d x\]

Input:

int((d*x+c)^(1/2)*sinh(b*x+a),x)
 

Output:

int((d*x+c)^(1/2)*sinh(b*x+a),x)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 301 vs. \(2 (91) = 182\).

Time = 0.12 (sec) , antiderivative size = 301, normalized size of antiderivative = 2.45 \[ \int \sqrt {c+d x} \sinh (a+b x) \, dx=-\frac {\sqrt {\pi } {\left (d \cosh \left (b x + a\right ) \cosh \left (-\frac {b c - a d}{d}\right ) - d \cosh \left (b x + a\right ) \sinh \left (-\frac {b c - a d}{d}\right ) + {\left (d \cosh \left (-\frac {b c - a d}{d}\right ) - d \sinh \left (-\frac {b c - a d}{d}\right )\right )} \sinh \left (b x + a\right )\right )} \sqrt {\frac {b}{d}} \operatorname {erf}\left (\sqrt {d x + c} \sqrt {\frac {b}{d}}\right ) - \sqrt {\pi } {\left (d \cosh \left (b x + a\right ) \cosh \left (-\frac {b c - a d}{d}\right ) + d \cosh \left (b x + a\right ) \sinh \left (-\frac {b c - a d}{d}\right ) + {\left (d \cosh \left (-\frac {b c - a d}{d}\right ) + d \sinh \left (-\frac {b c - a d}{d}\right )\right )} \sinh \left (b x + a\right )\right )} \sqrt {-\frac {b}{d}} \operatorname {erf}\left (\sqrt {d x + c} \sqrt {-\frac {b}{d}}\right ) - 2 \, {\left (b \cosh \left (b x + a\right )^{2} + 2 \, b \cosh \left (b x + a\right ) \sinh \left (b x + a\right ) + b \sinh \left (b x + a\right )^{2} + b\right )} \sqrt {d x + c}}{4 \, {\left (b^{2} \cosh \left (b x + a\right ) + b^{2} \sinh \left (b x + a\right )\right )}} \] Input:

integrate((d*x+c)^(1/2)*sinh(b*x+a),x, algorithm="fricas")
 

Output:

-1/4*(sqrt(pi)*(d*cosh(b*x + a)*cosh(-(b*c - a*d)/d) - d*cosh(b*x + a)*sin 
h(-(b*c - a*d)/d) + (d*cosh(-(b*c - a*d)/d) - d*sinh(-(b*c - a*d)/d))*sinh 
(b*x + a))*sqrt(b/d)*erf(sqrt(d*x + c)*sqrt(b/d)) - sqrt(pi)*(d*cosh(b*x + 
 a)*cosh(-(b*c - a*d)/d) + d*cosh(b*x + a)*sinh(-(b*c - a*d)/d) + (d*cosh( 
-(b*c - a*d)/d) + d*sinh(-(b*c - a*d)/d))*sinh(b*x + a))*sqrt(-b/d)*erf(sq 
rt(d*x + c)*sqrt(-b/d)) - 2*(b*cosh(b*x + a)^2 + 2*b*cosh(b*x + a)*sinh(b* 
x + a) + b*sinh(b*x + a)^2 + b)*sqrt(d*x + c))/(b^2*cosh(b*x + a) + b^2*si 
nh(b*x + a))
 

Sympy [F]

\[ \int \sqrt {c+d x} \sinh (a+b x) \, dx=\int \sqrt {c + d x} \sinh {\left (a + b x \right )}\, dx \] Input:

integrate((d*x+c)**(1/2)*sinh(b*x+a),x)
 

Output:

Integral(sqrt(c + d*x)*sinh(a + b*x), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 230 vs. \(2 (91) = 182\).

Time = 0.05 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.87 \[ \int \sqrt {c+d x} \sinh (a+b x) \, dx=\frac {8 \, {\left (d x + c\right )}^{\frac {3}{2}} \sinh \left (b x + a\right ) - \frac {{\left (\frac {3 \, \sqrt {\pi } d^{2} \operatorname {erf}\left (\sqrt {d x + c} \sqrt {-\frac {b}{d}}\right ) e^{\left (a - \frac {b c}{d}\right )}}{b^{2} \sqrt {-\frac {b}{d}}} + \frac {3 \, \sqrt {\pi } d^{2} \operatorname {erf}\left (\sqrt {d x + c} \sqrt {\frac {b}{d}}\right ) e^{\left (-a + \frac {b c}{d}\right )}}{b^{2} \sqrt {\frac {b}{d}}} - \frac {2 \, {\left (2 \, {\left (d x + c\right )}^{\frac {3}{2}} b d e^{\left (\frac {b c}{d}\right )} + 3 \, \sqrt {d x + c} d^{2} e^{\left (\frac {b c}{d}\right )}\right )} e^{\left (-a - \frac {{\left (d x + c\right )} b}{d}\right )}}{b^{2}} + \frac {2 \, {\left (2 \, {\left (d x + c\right )}^{\frac {3}{2}} b d e^{a} - 3 \, \sqrt {d x + c} d^{2} e^{a}\right )} e^{\left (\frac {{\left (d x + c\right )} b}{d} - \frac {b c}{d}\right )}}{b^{2}}\right )} b}{d}}{12 \, d} \] Input:

integrate((d*x+c)^(1/2)*sinh(b*x+a),x, algorithm="maxima")
 

Output:

1/12*(8*(d*x + c)^(3/2)*sinh(b*x + a) - (3*sqrt(pi)*d^2*erf(sqrt(d*x + c)* 
sqrt(-b/d))*e^(a - b*c/d)/(b^2*sqrt(-b/d)) + 3*sqrt(pi)*d^2*erf(sqrt(d*x + 
 c)*sqrt(b/d))*e^(-a + b*c/d)/(b^2*sqrt(b/d)) - 2*(2*(d*x + c)^(3/2)*b*d*e 
^(b*c/d) + 3*sqrt(d*x + c)*d^2*e^(b*c/d))*e^(-a - (d*x + c)*b/d)/b^2 + 2*( 
2*(d*x + c)^(3/2)*b*d*e^a - 3*sqrt(d*x + c)*d^2*e^a)*e^((d*x + c)*b/d - b* 
c/d)/b^2)*b/d)/d
                                                                                    
                                                                                    
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.37 \[ \int \sqrt {c+d x} \sinh (a+b x) \, dx=\frac {\frac {\sqrt {\pi } d^{2} \operatorname {erf}\left (-\frac {\sqrt {b d} \sqrt {d x + c}}{d}\right ) e^{\left (\frac {b c - a d}{d}\right )}}{\sqrt {b d} b} + \frac {\sqrt {\pi } d^{2} \operatorname {erf}\left (-\frac {\sqrt {-b d} \sqrt {d x + c}}{d}\right ) e^{\left (-\frac {b c - a d}{d}\right )}}{\sqrt {-b d} b} + \frac {2 \, \sqrt {d x + c} d e^{\left (\frac {{\left (d x + c\right )} b - b c + a d}{d}\right )}}{b} + \frac {2 \, \sqrt {d x + c} d e^{\left (-\frac {{\left (d x + c\right )} b - b c + a d}{d}\right )}}{b}}{4 \, d} \] Input:

integrate((d*x+c)^(1/2)*sinh(b*x+a),x, algorithm="giac")
 

Output:

1/4*(sqrt(pi)*d^2*erf(-sqrt(b*d)*sqrt(d*x + c)/d)*e^((b*c - a*d)/d)/(sqrt( 
b*d)*b) + sqrt(pi)*d^2*erf(-sqrt(-b*d)*sqrt(d*x + c)/d)*e^(-(b*c - a*d)/d) 
/(sqrt(-b*d)*b) + 2*sqrt(d*x + c)*d*e^(((d*x + c)*b - b*c + a*d)/d)/b + 2* 
sqrt(d*x + c)*d*e^(-((d*x + c)*b - b*c + a*d)/d)/b)/d
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {c+d x} \sinh (a+b x) \, dx=\int \mathrm {sinh}\left (a+b\,x\right )\,\sqrt {c+d\,x} \,d x \] Input:

int(sinh(a + b*x)*(c + d*x)^(1/2),x)
 

Output:

int(sinh(a + b*x)*(c + d*x)^(1/2), x)
 

Reduce [F]

\[ \int \sqrt {c+d x} \sinh (a+b x) \, dx=\int \sqrt {d x +c}\, \sinh \left (b x +a \right )d x \] Input:

int((d*x+c)^(1/2)*sinh(b*x+a),x)
 

Output:

int(sqrt(c + d*x)*sinh(a + b*x),x)