\(\int \frac {\coth ^6(x)}{i+\sinh (x)} \, dx\) [217]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 13, antiderivative size = 36 \[ \int \frac {\coth ^6(x)}{i+\sinh (x)} \, dx=-\frac {3}{8} \text {arctanh}(\cosh (x))+\frac {1}{5} i \coth ^5(x)-\frac {3}{8} \coth (x) \text {csch}(x)-\frac {1}{4} \coth ^3(x) \text {csch}(x) \] Output:

-3/8*arctanh(cosh(x))+1/5*I*coth(x)^5-3/8*coth(x)*csch(x)-1/4*coth(x)^3*cs 
ch(x)
 

Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(175\) vs. \(2(36)=72\).

Time = 0.07 (sec) , antiderivative size = 175, normalized size of antiderivative = 4.86 \[ \int \frac {\coth ^6(x)}{i+\sinh (x)} \, dx=\frac {1}{10} i \coth \left (\frac {x}{2}\right )-\frac {5}{32} \text {csch}^2\left (\frac {x}{2}\right )+\frac {7}{160} i \coth \left (\frac {x}{2}\right ) \text {csch}^2\left (\frac {x}{2}\right )-\frac {1}{64} \text {csch}^4\left (\frac {x}{2}\right )+\frac {1}{160} i \coth \left (\frac {x}{2}\right ) \text {csch}^4\left (\frac {x}{2}\right )-\frac {3}{8} \log \left (\cosh \left (\frac {x}{2}\right )\right )+\frac {3}{8} \log \left (\sinh \left (\frac {x}{2}\right )\right )-\frac {5}{32} \text {sech}^2\left (\frac {x}{2}\right )+\frac {1}{64} \text {sech}^4\left (\frac {x}{2}\right )+\frac {1}{10} i \tanh \left (\frac {x}{2}\right )-\frac {7}{160} i \text {sech}^2\left (\frac {x}{2}\right ) \tanh \left (\frac {x}{2}\right )+\frac {1}{160} i \text {sech}^4\left (\frac {x}{2}\right ) \tanh \left (\frac {x}{2}\right ) \] Input:

Integrate[Coth[x]^6/(I + Sinh[x]),x]
 

Output:

(I/10)*Coth[x/2] - (5*Csch[x/2]^2)/32 + ((7*I)/160)*Coth[x/2]*Csch[x/2]^2 
- Csch[x/2]^4/64 + (I/160)*Coth[x/2]*Csch[x/2]^4 - (3*Log[Cosh[x/2]])/8 + 
(3*Log[Sinh[x/2]])/8 - (5*Sech[x/2]^2)/32 + Sech[x/2]^4/64 + (I/10)*Tanh[x 
/2] - ((7*I)/160)*Sech[x/2]^2*Tanh[x/2] + (I/160)*Sech[x/2]^4*Tanh[x/2]
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 49, normalized size of antiderivative = 1.36, number of steps used = 21, number of rules used = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.538, Rules used = {3042, 25, 26, 3185, 25, 26, 3042, 25, 26, 3087, 15, 3091, 26, 3042, 26, 3091, 26, 3042, 26, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\coth ^6(x)}{\sinh (x)+i} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {1}{(i-i \sin (i x)) \tan (i x)^6}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int -\frac {i}{(1-\sin (i x)) \tan (i x)^6}dx\)

\(\Big \downarrow \) 26

\(\displaystyle i \int \frac {1}{(1-\sin (i x)) \tan (i x)^6}dx\)

\(\Big \downarrow \) 3185

\(\displaystyle i \left (\int -\coth ^4(x) \text {csch}^2(x)dx+\int -i \coth ^4(x) \text {csch}(x)dx\right )\)

\(\Big \downarrow \) 25

\(\displaystyle i \left (-\int \coth ^4(x) \text {csch}^2(x)dx+\int -i \coth ^4(x) \text {csch}(x)dx\right )\)

\(\Big \downarrow \) 26

\(\displaystyle i \left (-\int \coth ^4(x) \text {csch}^2(x)dx-i \int \coth ^4(x) \text {csch}(x)dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle i \left (-i \int i \sec \left (i x-\frac {\pi }{2}\right ) \tan \left (i x-\frac {\pi }{2}\right )^4dx-\int -\sec \left (i x-\frac {\pi }{2}\right )^2 \tan \left (i x-\frac {\pi }{2}\right )^4dx\right )\)

\(\Big \downarrow \) 25

\(\displaystyle i \left (\int \sec \left (i x-\frac {\pi }{2}\right )^2 \tan \left (i x-\frac {\pi }{2}\right )^4dx-i \int i \sec \left (i x-\frac {\pi }{2}\right ) \tan \left (i x-\frac {\pi }{2}\right )^4dx\right )\)

\(\Big \downarrow \) 26

\(\displaystyle i \left (\int \sec \left (i x-\frac {\pi }{2}\right ) \tan \left (i x-\frac {\pi }{2}\right )^4dx+\int \sec \left (i x-\frac {\pi }{2}\right )^2 \tan \left (i x-\frac {\pi }{2}\right )^4dx\right )\)

\(\Big \downarrow \) 3087

\(\displaystyle i \left (\int \sec \left (i x-\frac {\pi }{2}\right ) \tan \left (i x-\frac {\pi }{2}\right )^4dx-i \int \coth ^4(x)d(i \coth (x))\right )\)

\(\Big \downarrow \) 15

\(\displaystyle i \left (\frac {\coth ^5(x)}{5}+\int \sec \left (i x-\frac {\pi }{2}\right ) \tan \left (i x-\frac {\pi }{2}\right )^4dx\right )\)

\(\Big \downarrow \) 3091

\(\displaystyle i \left (-\frac {3}{4} \int i \coth ^2(x) \text {csch}(x)dx+\frac {\coth ^5(x)}{5}+\frac {1}{4} i \coth ^3(x) \text {csch}(x)\right )\)

\(\Big \downarrow \) 26

\(\displaystyle i \left (-\frac {3}{4} i \int \coth ^2(x) \text {csch}(x)dx+\frac {\coth ^5(x)}{5}+\frac {1}{4} i \coth ^3(x) \text {csch}(x)\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle i \left (-\frac {3}{4} i \int -i \sec \left (i x-\frac {\pi }{2}\right ) \tan \left (i x-\frac {\pi }{2}\right )^2dx+\frac {\coth ^5(x)}{5}+\frac {1}{4} i \coth ^3(x) \text {csch}(x)\right )\)

\(\Big \downarrow \) 26

\(\displaystyle i \left (-\frac {3}{4} \int \sec \left (i x-\frac {\pi }{2}\right ) \tan \left (i x-\frac {\pi }{2}\right )^2dx+\frac {\coth ^5(x)}{5}+\frac {1}{4} i \coth ^3(x) \text {csch}(x)\right )\)

\(\Big \downarrow \) 3091

\(\displaystyle i \left (-\frac {3}{4} \left (-\frac {1}{2} \int -i \text {csch}(x)dx-\frac {1}{2} i \coth (x) \text {csch}(x)\right )+\frac {\coth ^5(x)}{5}+\frac {1}{4} i \coth ^3(x) \text {csch}(x)\right )\)

\(\Big \downarrow \) 26

\(\displaystyle i \left (-\frac {3}{4} \left (\frac {1}{2} i \int \text {csch}(x)dx-\frac {1}{2} i \coth (x) \text {csch}(x)\right )+\frac {\coth ^5(x)}{5}+\frac {1}{4} i \coth ^3(x) \text {csch}(x)\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle i \left (-\frac {3}{4} \left (\frac {1}{2} i \int i \csc (i x)dx-\frac {1}{2} i \coth (x) \text {csch}(x)\right )+\frac {\coth ^5(x)}{5}+\frac {1}{4} i \coth ^3(x) \text {csch}(x)\right )\)

\(\Big \downarrow \) 26

\(\displaystyle i \left (-\frac {3}{4} \left (-\frac {1}{2} \int \csc (i x)dx-\frac {1}{2} i \coth (x) \text {csch}(x)\right )+\frac {\coth ^5(x)}{5}+\frac {1}{4} i \coth ^3(x) \text {csch}(x)\right )\)

\(\Big \downarrow \) 4257

\(\displaystyle i \left (-\frac {3}{4} \left (-\frac {1}{2} i \text {arctanh}(\cosh (x))-\frac {1}{2} i \coth (x) \text {csch}(x)\right )+\frac {\coth ^5(x)}{5}+\frac {1}{4} i \coth ^3(x) \text {csch}(x)\right )\)

Input:

Int[Coth[x]^6/(I + Sinh[x]),x]
 

Output:

I*(Coth[x]^5/5 + (I/4)*Coth[x]^3*Csch[x] - (3*((-1/2*I)*ArcTanh[Cosh[x]] - 
 (I/2)*Coth[x]*Csch[x]))/4)
 

Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3087
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_S 
ymbol] :> Simp[1/f   Subst[Int[(b*x)^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + 
f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n - 1) 
/2] && LtQ[0, n, m - 1])
 

rule 3091
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_), x_Symbol] :> Simp[b*(a*Sec[e + f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m 
 + n - 1))), x] - Simp[b^2*((n - 1)/(m + n - 1))   Int[(a*Sec[e + f*x])^m*( 
b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] & 
& NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]
 

rule 3185
Int[((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_.)/((a_) + (b_.)*sin[(e_.) + (f_.)*( 
x_)]), x_Symbol] :> Simp[1/a   Int[Sec[e + f*x]^2*(g*Tan[e + f*x])^p, x], x 
] - Simp[1/(b*g)   Int[Sec[e + f*x]*(g*Tan[e + f*x])^(p + 1), x], x] /; Fre 
eQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] && NeQ[p, -1]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 64 vs. \(2 (27 ) = 54\).

Time = 12.51 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.81

method result size
risch \(-\frac {-40 i {\mathrm e}^{8 x}+25 \,{\mathrm e}^{9 x}-10 \,{\mathrm e}^{7 x}-80 i {\mathrm e}^{4 x}+10 \,{\mathrm e}^{3 x}-8 i-25 \,{\mathrm e}^{x}}{20 \left ({\mathrm e}^{2 x}-1\right )^{5}}-\frac {3 \ln \left ({\mathrm e}^{x}+1\right )}{8}+\frac {3 \ln \left ({\mathrm e}^{x}-1\right )}{8}\) \(65\)
default \(\frac {i \tanh \left (\frac {x}{2}\right )}{16}+\frac {i \tanh \left (\frac {x}{2}\right )^{5}}{160}+\frac {\tanh \left (\frac {x}{2}\right )^{4}}{64}+\frac {i \tanh \left (\frac {x}{2}\right )^{3}}{32}+\frac {\tanh \left (\frac {x}{2}\right )^{2}}{8}+\frac {3 \ln \left (\tanh \left (\frac {x}{2}\right )\right )}{8}-\frac {1}{8 \tanh \left (\frac {x}{2}\right )^{2}}+\frac {i}{32 \tanh \left (\frac {x}{2}\right )^{3}}+\frac {i}{160 \tanh \left (\frac {x}{2}\right )^{5}}-\frac {1}{64 \tanh \left (\frac {x}{2}\right )^{4}}+\frac {i}{16 \tanh \left (\frac {x}{2}\right )}\) \(93\)

Input:

int(coth(x)^6/(I+sinh(x)),x,method=_RETURNVERBOSE)
 

Output:

-1/20*(-40*I*exp(x)^8+25*exp(x)^9-10*exp(x)^7-80*I*exp(x)^4+10*exp(x)^3-8* 
I-25*exp(x))/(exp(x)^2-1)^5-3/8*ln(exp(x)+1)+3/8*ln(exp(x)-1)
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 144 vs. \(2 (26) = 52\).

Time = 0.11 (sec) , antiderivative size = 144, normalized size of antiderivative = 4.00 \[ \int \frac {\coth ^6(x)}{i+\sinh (x)} \, dx=-\frac {15 \, {\left (e^{\left (10 \, x\right )} - 5 \, e^{\left (8 \, x\right )} + 10 \, e^{\left (6 \, x\right )} - 10 \, e^{\left (4 \, x\right )} + 5 \, e^{\left (2 \, x\right )} - 1\right )} \log \left (e^{x} + 1\right ) - 15 \, {\left (e^{\left (10 \, x\right )} - 5 \, e^{\left (8 \, x\right )} + 10 \, e^{\left (6 \, x\right )} - 10 \, e^{\left (4 \, x\right )} + 5 \, e^{\left (2 \, x\right )} - 1\right )} \log \left (e^{x} - 1\right ) + 50 \, e^{\left (9 \, x\right )} - 80 i \, e^{\left (8 \, x\right )} - 20 \, e^{\left (7 \, x\right )} - 160 i \, e^{\left (4 \, x\right )} + 20 \, e^{\left (3 \, x\right )} - 50 \, e^{x} - 16 i}{40 \, {\left (e^{\left (10 \, x\right )} - 5 \, e^{\left (8 \, x\right )} + 10 \, e^{\left (6 \, x\right )} - 10 \, e^{\left (4 \, x\right )} + 5 \, e^{\left (2 \, x\right )} - 1\right )}} \] Input:

integrate(coth(x)^6/(I+sinh(x)),x, algorithm="fricas")
 

Output:

-1/40*(15*(e^(10*x) - 5*e^(8*x) + 10*e^(6*x) - 10*e^(4*x) + 5*e^(2*x) - 1) 
*log(e^x + 1) - 15*(e^(10*x) - 5*e^(8*x) + 10*e^(6*x) - 10*e^(4*x) + 5*e^( 
2*x) - 1)*log(e^x - 1) + 50*e^(9*x) - 80*I*e^(8*x) - 20*e^(7*x) - 160*I*e^ 
(4*x) + 20*e^(3*x) - 50*e^x - 16*I)/(e^(10*x) - 5*e^(8*x) + 10*e^(6*x) - 1 
0*e^(4*x) + 5*e^(2*x) - 1)
 

Sympy [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 100 vs. \(2 (36) = 72\).

Time = 0.14 (sec) , antiderivative size = 100, normalized size of antiderivative = 2.78 \[ \int \frac {\coth ^6(x)}{i+\sinh (x)} \, dx=\frac {3 \log {\left (e^{x} - 1 \right )}}{8} - \frac {3 \log {\left (e^{x} + 1 \right )}}{8} + \frac {- 25 e^{9 x} + 40 i e^{8 x} + 10 e^{7 x} + 80 i e^{4 x} - 10 e^{3 x} + 25 e^{x} + 8 i}{20 e^{10 x} - 100 e^{8 x} + 200 e^{6 x} - 200 e^{4 x} + 100 e^{2 x} - 20} \] Input:

integrate(coth(x)**6/(I+sinh(x)),x)
 

Output:

3*log(exp(x) - 1)/8 - 3*log(exp(x) + 1)/8 + (-25*exp(9*x) + 40*I*exp(8*x) 
+ 10*exp(7*x) + 80*I*exp(4*x) - 10*exp(3*x) + 25*exp(x) + 8*I)/(20*exp(10* 
x) - 100*exp(8*x) + 200*exp(6*x) - 200*exp(4*x) + 100*exp(2*x) - 20)
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 91 vs. \(2 (26) = 52\).

Time = 0.05 (sec) , antiderivative size = 91, normalized size of antiderivative = 2.53 \[ \int \frac {\coth ^6(x)}{i+\sinh (x)} \, dx=\frac {25 \, e^{\left (-x\right )} - 10 \, e^{\left (-3 \, x\right )} - 80 i \, e^{\left (-4 \, x\right )} + 10 \, e^{\left (-7 \, x\right )} - 40 i \, e^{\left (-8 \, x\right )} - 25 \, e^{\left (-9 \, x\right )} - 8 i}{20 \, {\left (5 \, e^{\left (-2 \, x\right )} - 10 \, e^{\left (-4 \, x\right )} + 10 \, e^{\left (-6 \, x\right )} - 5 \, e^{\left (-8 \, x\right )} + e^{\left (-10 \, x\right )} - 1\right )}} - \frac {3}{8} \, \log \left (e^{\left (-x\right )} + 1\right ) + \frac {3}{8} \, \log \left (e^{\left (-x\right )} - 1\right ) \] Input:

integrate(coth(x)^6/(I+sinh(x)),x, algorithm="maxima")
 

Output:

1/20*(25*e^(-x) - 10*e^(-3*x) - 80*I*e^(-4*x) + 10*e^(-7*x) - 40*I*e^(-8*x 
) - 25*e^(-9*x) - 8*I)/(5*e^(-2*x) - 10*e^(-4*x) + 10*e^(-6*x) - 5*e^(-8*x 
) + e^(-10*x) - 1) - 3/8*log(e^(-x) + 1) + 3/8*log(e^(-x) - 1)
 

Giac [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 62 vs. \(2 (26) = 52\).

Time = 0.12 (sec) , antiderivative size = 62, normalized size of antiderivative = 1.72 \[ \int \frac {\coth ^6(x)}{i+\sinh (x)} \, dx=-\frac {25 \, e^{\left (9 \, x\right )} - 40 i \, e^{\left (8 \, x\right )} - 10 \, e^{\left (7 \, x\right )} - 80 i \, e^{\left (4 \, x\right )} + 10 \, e^{\left (3 \, x\right )} - 25 \, e^{x} - 8 i}{20 \, {\left (e^{\left (2 \, x\right )} - 1\right )}^{5}} - \frac {3}{8} \, \log \left (e^{x} + 1\right ) + \frac {3}{8} \, \log \left ({\left | e^{x} - 1 \right |}\right ) \] Input:

integrate(coth(x)^6/(I+sinh(x)),x, algorithm="giac")
 

Output:

-1/20*(25*e^(9*x) - 40*I*e^(8*x) - 10*e^(7*x) - 80*I*e^(4*x) + 10*e^(3*x) 
- 25*e^x - 8*I)/(e^(2*x) - 1)^5 - 3/8*log(e^x + 1) + 3/8*log(abs(e^x - 1))
 

Mupad [B] (verification not implemented)

Time = 1.80 (sec) , antiderivative size = 124, normalized size of antiderivative = 3.44 \[ \int \frac {\coth ^6(x)}{i+\sinh (x)} \, dx=\frac {3\,\ln \left (\frac {3}{4}-\frac {3\,{\mathrm {e}}^x}{4}\right )}{8}-\frac {3\,\ln \left (\frac {3\,{\mathrm {e}}^x}{4}+\frac {3}{4}\right )}{8}-\frac {5\,{\mathrm {e}}^x}{4\,\left ({\mathrm {e}}^{2\,x}-1\right )}-\frac {9\,{\mathrm {e}}^x}{2\,{\left ({\mathrm {e}}^{2\,x}-1\right )}^2}-\frac {6\,{\mathrm {e}}^x}{{\left ({\mathrm {e}}^{2\,x}-1\right )}^3}-\frac {4\,{\mathrm {e}}^x}{{\left ({\mathrm {e}}^{2\,x}-1\right )}^4}+\frac {2{}\mathrm {i}}{{\mathrm {e}}^{2\,x}-1}+\frac {8{}\mathrm {i}}{{\left ({\mathrm {e}}^{2\,x}-1\right )}^2}+\frac {16{}\mathrm {i}}{{\left ({\mathrm {e}}^{2\,x}-1\right )}^3}+\frac {16{}\mathrm {i}}{{\left ({\mathrm {e}}^{2\,x}-1\right )}^4}+\frac {32{}\mathrm {i}}{5\,{\left ({\mathrm {e}}^{2\,x}-1\right )}^5} \] Input:

int(coth(x)^6/(sinh(x) + 1i),x)
 

Output:

(3*log(3/4 - (3*exp(x))/4))/8 - (3*log((3*exp(x))/4 + 3/4))/8 - (5*exp(x)) 
/(4*(exp(2*x) - 1)) - (9*exp(x))/(2*(exp(2*x) - 1)^2) - (6*exp(x))/(exp(2* 
x) - 1)^3 - (4*exp(x))/(exp(2*x) - 1)^4 + 2i/(exp(2*x) - 1) + 8i/(exp(2*x) 
 - 1)^2 + 16i/(exp(2*x) - 1)^3 + 16i/(exp(2*x) - 1)^4 + 32i/(5*(exp(2*x) - 
 1)^5)
 

Reduce [F]

\[ \int \frac {\coth ^6(x)}{i+\sinh (x)} \, dx=\int \frac {\coth \left (x \right )^{6}}{\sinh \left (x \right )+i}d x \] Input:

int(coth(x)^6/(I+sinh(x)),x)
 

Output:

int(coth(x)**6/(sinh(x) + i),x)