\(\int \frac {1}{1-\sinh ^6(x)} \, dx\) [3]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 10, antiderivative size = 75 \[ \int \frac {1}{1-\sinh ^6(x)} \, dx=-\frac {1}{6} \arctan \left (\sqrt {3}-2 \tanh (x)\right )+\frac {1}{6} \arctan \left (\sqrt {3}+2 \tanh (x)\right )+\frac {\text {arctanh}\left (\sqrt {2} \tanh (x)\right )}{3 \sqrt {2}}+\frac {\text {arctanh}\left (\frac {\sqrt {3} \tanh (x)}{1+\tanh ^2(x)}\right )}{2 \sqrt {3}} \] Output:

1/6*arctan(-3^(1/2)+2*tanh(x))+1/6*arctan(3^(1/2)+2*tanh(x))+1/6*arctanh(2 
^(1/2)*tanh(x))*2^(1/2)+1/6*arctanh(3^(1/2)*tanh(x)/(1+tanh(x)^2))*3^(1/2)
 

Mathematica [A] (verified)

Time = 5.17 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.69 \[ \int \frac {1}{1-\sinh ^6(x)} \, dx=\frac {1}{6} \left (\sqrt {7-4 \sqrt {3}} \left (2+\sqrt {3}\right ) \arctan \left (\frac {e^{2 x}}{\sqrt {7-4 \sqrt {3}}}\right )-\left (-2+\sqrt {3}\right ) \sqrt {7+4 \sqrt {3}} \arctan \left (\frac {e^{2 x}}{\sqrt {7+4 \sqrt {3}}}\right )-\sqrt {3} \text {arctanh}\left (\frac {7+e^{4 x}}{4 \sqrt {3}}\right )+\sqrt {2} \text {arctanh}\left (\sqrt {2} \tanh (x)\right )\right ) \] Input:

Integrate[(1 - Sinh[x]^6)^(-1),x]
 

Output:

(Sqrt[7 - 4*Sqrt[3]]*(2 + Sqrt[3])*ArcTan[E^(2*x)/Sqrt[7 - 4*Sqrt[3]]] - ( 
-2 + Sqrt[3])*Sqrt[7 + 4*Sqrt[3]]*ArcTan[E^(2*x)/Sqrt[7 + 4*Sqrt[3]]] - Sq 
rt[3]*ArcTanh[(7 + E^(4*x))/(4*Sqrt[3])] + Sqrt[2]*ArcTanh[Sqrt[2]*Tanh[x] 
])/6
 

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.11, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {3042, 3690, 3042, 3660, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{1-\sinh ^6(x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{1+\sin (i x)^6}dx\)

\(\Big \downarrow \) 3690

\(\displaystyle \frac {1}{3} \int \frac {1}{1-\sinh ^2(x)}dx+\frac {1}{3} \int \frac {1}{\sqrt [3]{-1} \sinh ^2(x)+1}dx+\frac {1}{3} \int \frac {1}{1-(-1)^{2/3} \sinh ^2(x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {1}{\sin (i x)^2+1}dx+\frac {1}{3} \int \frac {1}{1-\sqrt [3]{-1} \sin (i x)^2}dx+\frac {1}{3} \int \frac {1}{(-1)^{2/3} \sin (i x)^2+1}dx\)

\(\Big \downarrow \) 3660

\(\displaystyle \frac {1}{3} \int \frac {1}{1-2 \tanh ^2(x)}d\tanh (x)+\frac {1}{3} \int \frac {1}{1-\left (1-\sqrt [3]{-1}\right ) \tanh ^2(x)}d\tanh (x)+\frac {1}{3} \int \frac {1}{1-\left (1+(-1)^{2/3}\right ) \tanh ^2(x)}d\tanh (x)\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\text {arctanh}\left (\sqrt {2} \tanh (x)\right )}{3 \sqrt {2}}+\frac {\text {arctanh}\left (\sqrt {1-\sqrt [3]{-1}} \tanh (x)\right )}{3 \sqrt {1-\sqrt [3]{-1}}}+\frac {\text {arctanh}\left (\sqrt {1+(-1)^{2/3}} \tanh (x)\right )}{3 \sqrt {1+(-1)^{2/3}}}\)

Input:

Int[(1 - Sinh[x]^6)^(-1),x]
 

Output:

ArcTanh[Sqrt[2]*Tanh[x]]/(3*Sqrt[2]) + ArcTanh[Sqrt[1 - (-1)^(1/3)]*Tanh[x 
]]/(3*Sqrt[1 - (-1)^(1/3)]) + ArcTanh[Sqrt[1 + (-1)^(2/3)]*Tanh[x]]/(3*Sqr 
t[1 + (-1)^(2/3)])
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3660
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(-1), x_Symbol] :> With[{ff = 
FreeFactors[Tan[e + f*x], x]}, Simp[ff/f   Subst[Int[1/(a + (a + b)*ff^2*x^ 
2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x]
 

rule 3690
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(-1), x_Symbol] :> Module[{ 
k}, Simp[2/(a*n)   Sum[Int[1/(1 - Sin[e + f*x]^2/((-1)^(4*(k/n))*Rt[-a/b, n 
/2])), x], {k, 1, n/2}], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[n/2]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.86 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.95

method result size
risch \(\frac {\sqrt {2}\, \ln \left ({\mathrm e}^{2 x}-3+2 \sqrt {2}\right )}{12}-\frac {\sqrt {2}\, \ln \left ({\mathrm e}^{2 x}-3-2 \sqrt {2}\right )}{12}+\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (1296 \textit {\_Z}^{4}-36 \textit {\_Z}^{2}+1\right )}{\sum }\textit {\_R} \ln \left (432 \textit {\_R}^{3}-72 \textit {\_R}^{2}+{\mathrm e}^{2 x}+1\right )\right )\) \(71\)
default \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}+2 \textit {\_Z}^{3}+2 \textit {\_Z}^{2}-2 \textit {\_Z} +1\right )}{\sum }\frac {\left (-\textit {\_R}^{2}-\textit {\_R} +1\right ) \ln \left (\tanh \left (\frac {x}{2}\right )-\textit {\_R} \right )}{2 \textit {\_R}^{3}+3 \textit {\_R}^{2}+2 \textit {\_R} -1}\right )}{3}+\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\left (2 \tanh \left (\frac {x}{2}\right )-2\right ) \sqrt {2}}{4}\right )}{6}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-2 \textit {\_Z}^{3}+2 \textit {\_Z}^{2}+2 \textit {\_Z} +1\right )}{\sum }\frac {\left (-\textit {\_R}^{2}+\textit {\_R} +1\right ) \ln \left (\tanh \left (\frac {x}{2}\right )-\textit {\_R} \right )}{2 \textit {\_R}^{3}-3 \textit {\_R}^{2}+2 \textit {\_R} +1}\right )}{3}+\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\left (2 \tanh \left (\frac {x}{2}\right )+2\right ) \sqrt {2}}{4}\right )}{6}\) \(160\)

Input:

int(1/(1-sinh(x)^6),x,method=_RETURNVERBOSE)
 

Output:

1/12*2^(1/2)*ln(exp(2*x)-3+2*2^(1/2))-1/12*2^(1/2)*ln(exp(2*x)-3-2*2^(1/2) 
)+sum(_R*ln(432*_R^3-72*_R^2+exp(2*x)+1),_R=RootOf(1296*_Z^4-36*_Z^2+1))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 247 vs. \(2 (57) = 114\).

Time = 0.09 (sec) , antiderivative size = 247, normalized size of antiderivative = 3.29 \[ \int \frac {1}{1-\sinh ^6(x)} \, dx=-\frac {1}{12} \, \sqrt {3} \log \left (\frac {4 \, {\left ({\left (\sqrt {3} + 2\right )} \cosh \left (x\right )^{2} - {\left (2 \, \sqrt {3} + 3\right )} \cosh \left (x\right ) \sinh \left (x\right ) + {\left (\sqrt {3} + 2\right )} \sinh \left (x\right )^{2}\right )}}{\cosh \left (x\right )^{2} - 2 \, \cosh \left (x\right ) \sinh \left (x\right ) + \sinh \left (x\right )^{2}}\right ) + \frac {1}{12} \, \sqrt {3} \log \left (-\frac {4 \, {\left ({\left (\sqrt {3} - 2\right )} \cosh \left (x\right )^{2} - {\left (2 \, \sqrt {3} - 3\right )} \cosh \left (x\right ) \sinh \left (x\right ) + {\left (\sqrt {3} - 2\right )} \sinh \left (x\right )^{2}\right )}}{\cosh \left (x\right )^{2} - 2 \, \cosh \left (x\right ) \sinh \left (x\right ) + \sinh \left (x\right )^{2}}\right ) + \frac {1}{12} \, \sqrt {2} \log \left (-\frac {3 \, {\left (2 \, \sqrt {2} - 3\right )} \cosh \left (x\right )^{2} - 4 \, {\left (3 \, \sqrt {2} - 4\right )} \cosh \left (x\right ) \sinh \left (x\right ) + 3 \, {\left (2 \, \sqrt {2} - 3\right )} \sinh \left (x\right )^{2} - 2 \, \sqrt {2} + 3}{\cosh \left (x\right )^{2} + \sinh \left (x\right )^{2} - 3}\right ) - \frac {1}{6} \, \arctan \left (-\frac {{\left (\sqrt {3} + 2\right )} \cosh \left (x\right ) + {\left (\sqrt {3} + 2\right )} \sinh \left (x\right )}{\cosh \left (x\right ) - \sinh \left (x\right )}\right ) + \frac {1}{6} \, \arctan \left (-\frac {{\left (\sqrt {3} - 2\right )} \cosh \left (x\right ) + {\left (\sqrt {3} - 2\right )} \sinh \left (x\right )}{\cosh \left (x\right ) - \sinh \left (x\right )}\right ) \] Input:

integrate(1/(1-sinh(x)^6),x, algorithm="fricas")
 

Output:

-1/12*sqrt(3)*log(4*((sqrt(3) + 2)*cosh(x)^2 - (2*sqrt(3) + 3)*cosh(x)*sin 
h(x) + (sqrt(3) + 2)*sinh(x)^2)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2 
)) + 1/12*sqrt(3)*log(-4*((sqrt(3) - 2)*cosh(x)^2 - (2*sqrt(3) - 3)*cosh(x 
)*sinh(x) + (sqrt(3) - 2)*sinh(x)^2)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh 
(x)^2)) + 1/12*sqrt(2)*log(-(3*(2*sqrt(2) - 3)*cosh(x)^2 - 4*(3*sqrt(2) - 
4)*cosh(x)*sinh(x) + 3*(2*sqrt(2) - 3)*sinh(x)^2 - 2*sqrt(2) + 3)/(cosh(x) 
^2 + sinh(x)^2 - 3)) - 1/6*arctan(-((sqrt(3) + 2)*cosh(x) + (sqrt(3) + 2)* 
sinh(x))/(cosh(x) - sinh(x))) + 1/6*arctan(-((sqrt(3) - 2)*cosh(x) + (sqrt 
(3) - 2)*sinh(x))/(cosh(x) - sinh(x)))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{1-\sinh ^6(x)} \, dx=\text {Timed out} \] Input:

integrate(1/(1-sinh(x)**6),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {1}{1-\sinh ^6(x)} \, dx=\int { -\frac {1}{\sinh \left (x\right )^{6} - 1} \,d x } \] Input:

integrate(1/(1-sinh(x)^6),x, algorithm="maxima")
 

Output:

-1/12*sqrt(2)*log(-(sqrt(2) - e^x + 1)/(sqrt(2) + e^x - 1)) + 1/12*sqrt(2) 
*log(-(sqrt(2) - e^x - 1)/(sqrt(2) + e^x + 1)) + integrate(1/3*(e^(3*x) + 
4*e^(2*x) - e^x)/(e^(4*x) + 2*e^(3*x) + 2*e^(2*x) - 2*e^x + 1), x) - integ 
rate(1/3*(e^(3*x) - 4*e^(2*x) - e^x)/(e^(4*x) - 2*e^(3*x) + 2*e^(2*x) + 2* 
e^x + 1), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 143 vs. \(2 (57) = 114\).

Time = 0.14 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.91 \[ \int \frac {1}{1-\sinh ^6(x)} \, dx=-\frac {1}{36} \, {\left ({\left (2 \, \sqrt {3} - 3\right )} e^{\left (4 \, x\right )} + 2 \, \sqrt {3} - 3\right )} \arctan \left (\frac {e^{\left (2 \, x\right )}}{\sqrt {3} + 2}\right ) + \frac {1}{36} \, {\left ({\left (2 \, \sqrt {3} + 3\right )} e^{\left (4 \, x\right )} + 2 \, \sqrt {3} + 3\right )} \arctan \left (-\frac {e^{\left (2 \, x\right )}}{\sqrt {3} - 2}\right ) - \frac {1}{12} \, \sqrt {3} \log \left ({\left (\sqrt {3} + 2\right )}^{2} + e^{\left (4 \, x\right )}\right ) + \frac {1}{12} \, \sqrt {3} \log \left ({\left (\sqrt {3} - 2\right )}^{2} + e^{\left (4 \, x\right )}\right ) - \frac {1}{12} \, \sqrt {2} \log \left (\frac {{\left | -4 \, \sqrt {2} + 2 \, e^{\left (2 \, x\right )} - 6 \right |}}{{\left | 4 \, \sqrt {2} + 2 \, e^{\left (2 \, x\right )} - 6 \right |}}\right ) \] Input:

integrate(1/(1-sinh(x)^6),x, algorithm="giac")
 

Output:

-1/36*((2*sqrt(3) - 3)*e^(4*x) + 2*sqrt(3) - 3)*arctan(e^(2*x)/(sqrt(3) + 
2)) + 1/36*((2*sqrt(3) + 3)*e^(4*x) + 2*sqrt(3) + 3)*arctan(-e^(2*x)/(sqrt 
(3) - 2)) - 1/12*sqrt(3)*log((sqrt(3) + 2)^2 + e^(4*x)) + 1/12*sqrt(3)*log 
((sqrt(3) - 2)^2 + e^(4*x)) - 1/12*sqrt(2)*log(abs(-4*sqrt(2) + 2*e^(2*x) 
- 6)/abs(4*sqrt(2) + 2*e^(2*x) - 6))
 

Mupad [B] (verification not implemented)

Time = 3.35 (sec) , antiderivative size = 285, normalized size of antiderivative = 3.80 \[ \int \frac {1}{1-\sinh ^6(x)} \, dx =\text {Too large to display} \] Input:

int(-1/(sinh(x)^6 - 1),x)
 

Output:

(log(exp(2*x)*(14009449395540459520 + 6177144285775790080i) + 3^(1/2)*(955 
607545932677120 - 2167269359741829120i) - 3^(1/2)*exp(2*x)*(80883593776411 
44320 + 3566375915854233600i) - (1655160823988879360 - 3753820658157486080 
i))*1i)/12 - (log(exp(2*x)*(14009449395540459520 - 6177144285775790080i) + 
 3^(1/2)*(955607545932677120 + 2167269359741829120i) - 3^(1/2)*exp(2*x)*(8 
088359377641144320 - 3566375915854233600i) - (1655160823988879360 + 375382 
0658157486080i))*1i)/12 + atan((14009449395540459520*exp(2*x) - 9556075459 
32677120*3^(1/2) + 8088359377641144320*3^(1/2)*exp(2*x) - 1655160823988879 
360)/(6177144285775790080*exp(2*x) + 2167269359741829120*3^(1/2) + 3566375 
915854233600*3^(1/2)*exp(2*x) + 3753820658157486080))/6 - (3^(1/2)*log((61 
77144285775790080*exp(2*x) - 2167269359741829120*3^(1/2) - 356637591585423 
3600*3^(1/2)*exp(2*x) + 3753820658157486080)^2 + (14009449395540459520*exp 
(2*x) + 955607545932677120*3^(1/2) - 8088359377641144320*3^(1/2)*exp(2*x) 
- 1655160823988879360)^2))/12 + (3^(1/2)*log((6177144285775790080*exp(2*x) 
 + 2167269359741829120*3^(1/2) + 3566375915854233600*3^(1/2)*exp(2*x) + 37 
53820658157486080)^2 + (14009449395540459520*exp(2*x) - 955607545932677120 
*3^(1/2) + 8088359377641144320*3^(1/2)*exp(2*x) - 1655160823988879360)^2)) 
/12 + (2^(1/2)*log(17674880313941032960*exp(2*x) - 2144322552070144000*2^( 
1/2) + 12498027726650736640*2^(1/2)*exp(2*x) - 3032530035220152320))/12 - 
(2^(1/2)*log(17674880313941032960*exp(2*x) + 2144322552070144000*2^(1/2...
 

Reduce [F]

\[ \int \frac {1}{1-\sinh ^6(x)} \, dx=-2 \sqrt {2}\, \mathrm {log}\left (e^{x}-\sqrt {2}-1\right )+2 \sqrt {2}\, \mathrm {log}\left (e^{x}-\sqrt {2}+1\right )+2 \sqrt {2}\, \mathrm {log}\left (e^{x}+\sqrt {2}-1\right )-2 \sqrt {2}\, \mathrm {log}\left (e^{x}+\sqrt {2}+1\right )+\frac {960 \left (\int \frac {e^{4 x}}{e^{12 x}-6 e^{10 x}+15 e^{8 x}-84 e^{6 x}+15 e^{4 x}-6 e^{2 x}+1}d x \right )}{7}+\frac {64 \left (\int \frac {e^{2 x}}{e^{12 x}-6 e^{10 x}+15 e^{8 x}-84 e^{6 x}+15 e^{4 x}-6 e^{2 x}+1}d x \right )}{7}+\frac {64 \left (\int \frac {1}{e^{12 x}-6 e^{10 x}+15 e^{8 x}-84 e^{6 x}+15 e^{4 x}-6 e^{2 x}+1}d x \right )}{7}-\frac {4 \,\mathrm {log}\left (e^{8 x}+14 e^{4 x}+1\right )}{21}+\frac {8 \,\mathrm {log}\left (e^{x}-\sqrt {2}-1\right )}{3}+\frac {8 \,\mathrm {log}\left (e^{x}-\sqrt {2}+1\right )}{3}+\frac {8 \,\mathrm {log}\left (e^{x}+\sqrt {2}-1\right )}{3}+\frac {8 \,\mathrm {log}\left (e^{x}+\sqrt {2}+1\right )}{3}-\frac {64 x}{7} \] Input:

int(1/(1-sinh(x)^6),x)
 

Output:

(2*( - 21*sqrt(2)*log(e**x - sqrt(2) - 1) + 21*sqrt(2)*log(e**x - sqrt(2) 
+ 1) + 21*sqrt(2)*log(e**x + sqrt(2) - 1) - 21*sqrt(2)*log(e**x + sqrt(2) 
+ 1) + 1440*int(e**(4*x)/(e**(12*x) - 6*e**(10*x) + 15*e**(8*x) - 84*e**(6 
*x) + 15*e**(4*x) - 6*e**(2*x) + 1),x) + 96*int(e**(2*x)/(e**(12*x) - 6*e* 
*(10*x) + 15*e**(8*x) - 84*e**(6*x) + 15*e**(4*x) - 6*e**(2*x) + 1),x) + 9 
6*int(1/(e**(12*x) - 6*e**(10*x) + 15*e**(8*x) - 84*e**(6*x) + 15*e**(4*x) 
 - 6*e**(2*x) + 1),x) - 2*log(e**(8*x) + 14*e**(4*x) + 1) + 28*log(e**x - 
sqrt(2) - 1) + 28*log(e**x - sqrt(2) + 1) + 28*log(e**x + sqrt(2) - 1) + 2 
8*log(e**x + sqrt(2) + 1) - 96*x))/21