\(\int \frac {1}{(1-\sinh ^2(x))^3} \, dx\) [25]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 10, antiderivative size = 55 \[ \int \frac {1}{\left (1-\sinh ^2(x)\right )^3} \, dx=\frac {19 \text {arctanh}\left (\sqrt {2} \tanh (x)\right )}{32 \sqrt {2}}+\frac {\cosh (x) \sinh (x)}{8 \left (1-\sinh ^2(x)\right )^2}+\frac {9 \cosh (x) \sinh (x)}{32 \left (1-\sinh ^2(x)\right )} \] Output:

19/64*arctanh(2^(1/2)*tanh(x))*2^(1/2)+1/8*cosh(x)*sinh(x)/(1-sinh(x)^2)^2 
+9*cosh(x)*sinh(x)/(32-32*sinh(x)^2)
 

Mathematica [A] (verified)

Time = 0.31 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.93 \[ \int \frac {1}{\left (1-\sinh ^2(x)\right )^3} \, dx=\frac {19 \text {arctanh}\left (\sqrt {2} \tanh (x)\right )}{32 \sqrt {2}}+\frac {\sinh (2 x)}{4 (-3+\cosh (2 x))^2}-\frac {9 \sinh (2 x)}{32 (-3+\cosh (2 x))} \] Input:

Integrate[(1 - Sinh[x]^2)^(-3),x]
 

Output:

(19*ArcTanh[Sqrt[2]*Tanh[x]])/(32*Sqrt[2]) + Sinh[2*x]/(4*(-3 + Cosh[2*x]) 
^2) - (9*Sinh[2*x])/(32*(-3 + Cosh[2*x]))
 

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 60, normalized size of antiderivative = 1.09, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.900, Rules used = {3042, 3663, 25, 3042, 3652, 27, 3042, 3660, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (1-\sinh ^2(x)\right )^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (1+\sin (i x)^2\right )^3}dx\)

\(\Big \downarrow \) 3663

\(\displaystyle \frac {\sinh (x) \cosh (x)}{8 \left (1-\sinh ^2(x)\right )^2}-\frac {1}{8} \int -\frac {2 \sinh ^2(x)+7}{\left (1-\sinh ^2(x)\right )^2}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{8} \int \frac {2 \sinh ^2(x)+7}{\left (1-\sinh ^2(x)\right )^2}dx+\frac {\sinh (x) \cosh (x)}{8 \left (1-\sinh ^2(x)\right )^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sinh (x) \cosh (x)}{8 \left (1-\sinh ^2(x)\right )^2}+\frac {1}{8} \int \frac {7-2 \sin (i x)^2}{\left (\sin (i x)^2+1\right )^2}dx\)

\(\Big \downarrow \) 3652

\(\displaystyle \frac {1}{8} \left (\frac {1}{4} \int \frac {19}{1-\sinh ^2(x)}dx+\frac {9 \sinh (x) \cosh (x)}{4 \left (1-\sinh ^2(x)\right )}\right )+\frac {\sinh (x) \cosh (x)}{8 \left (1-\sinh ^2(x)\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{8} \left (\frac {19}{4} \int \frac {1}{1-\sinh ^2(x)}dx+\frac {9 \sinh (x) \cosh (x)}{4 \left (1-\sinh ^2(x)\right )}\right )+\frac {\sinh (x) \cosh (x)}{8 \left (1-\sinh ^2(x)\right )^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sinh (x) \cosh (x)}{8 \left (1-\sinh ^2(x)\right )^2}+\frac {1}{8} \left (\frac {9 \sinh (x) \cosh (x)}{4 \left (1-\sinh ^2(x)\right )}+\frac {19}{4} \int \frac {1}{\sin (i x)^2+1}dx\right )\)

\(\Big \downarrow \) 3660

\(\displaystyle \frac {1}{8} \left (\frac {19}{4} \int \frac {1}{1-2 \tanh ^2(x)}d\tanh (x)+\frac {9 \sinh (x) \cosh (x)}{4 \left (1-\sinh ^2(x)\right )}\right )+\frac {\sinh (x) \cosh (x)}{8 \left (1-\sinh ^2(x)\right )^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{8} \left (\frac {19 \text {arctanh}\left (\sqrt {2} \tanh (x)\right )}{4 \sqrt {2}}+\frac {9 \sinh (x) \cosh (x)}{4 \left (1-\sinh ^2(x)\right )}\right )+\frac {\sinh (x) \cosh (x)}{8 \left (1-\sinh ^2(x)\right )^2}\)

Input:

Int[(1 - Sinh[x]^2)^(-3),x]
 

Output:

(Cosh[x]*Sinh[x])/(8*(1 - Sinh[x]^2)^2) + ((19*ArcTanh[Sqrt[2]*Tanh[x]])/( 
4*Sqrt[2]) + (9*Cosh[x]*Sinh[x])/(4*(1 - Sinh[x]^2)))/8
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3652
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b - a*B))*Cos[e + f*x]*Sin[e + f*x 
]*((a + b*Sin[e + f*x]^2)^(p + 1)/(2*a*f*(a + b)*(p + 1))), x] - Simp[1/(2* 
a*(a + b)*(p + 1))   Int[(a + b*Sin[e + f*x]^2)^(p + 1)*Simp[a*B - A*(2*a*( 
p + 1) + b*(2*p + 3)) + 2*(A*b - a*B)*(p + 2)*Sin[e + f*x]^2, x], x], x] /; 
 FreeQ[{a, b, e, f, A, B}, x] && LtQ[p, -1] && NeQ[a + b, 0]
 

rule 3660
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(-1), x_Symbol] :> With[{ff = 
FreeFactors[Tan[e + f*x], x]}, Simp[ff/f   Subst[Int[1/(a + (a + b)*ff^2*x^ 
2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x]
 

rule 3663
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Simp[(-b)*C 
os[e + f*x]*Sin[e + f*x]*((a + b*Sin[e + f*x]^2)^(p + 1)/(2*a*f*(p + 1)*(a 
+ b))), x] + Simp[1/(2*a*(p + 1)*(a + b))   Int[(a + b*Sin[e + f*x]^2)^(p + 
 1)*Simp[2*a*(p + 1) + b*(2*p + 3) - 2*b*(p + 2)*Sin[e + f*x]^2, x], x], x] 
 /; FreeQ[{a, b, e, f}, x] && NeQ[a + b, 0] && LtQ[p, -1]
 
Maple [A] (verified)

Time = 0.48 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.31

method result size
risch \(-\frac {19 \,{\mathrm e}^{6 x}-171 \,{\mathrm e}^{4 x}+89 \,{\mathrm e}^{2 x}-9}{16 \left ({\mathrm e}^{4 x}-6 \,{\mathrm e}^{2 x}+1\right )^{2}}+\frac {19 \sqrt {2}\, \ln \left ({\mathrm e}^{2 x}-3+2 \sqrt {2}\right )}{128}-\frac {19 \sqrt {2}\, \ln \left ({\mathrm e}^{2 x}-3-2 \sqrt {2}\right )}{128}\) \(72\)
default \(-\frac {-\frac {13 \tanh \left (\frac {x}{2}\right )^{3}}{8}-\frac {11 \tanh \left (\frac {x}{2}\right )^{2}}{8}+\frac {31 \tanh \left (\frac {x}{2}\right )}{8}-\frac {11}{8}}{4 \left (\tanh \left (\frac {x}{2}\right )^{2}+2 \tanh \left (\frac {x}{2}\right )-1\right )^{2}}+\frac {19 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\left (2 \tanh \left (\frac {x}{2}\right )+2\right ) \sqrt {2}}{4}\right )}{64}-\frac {-\frac {13 \tanh \left (\frac {x}{2}\right )^{3}}{8}+\frac {11 \tanh \left (\frac {x}{2}\right )^{2}}{8}+\frac {31 \tanh \left (\frac {x}{2}\right )}{8}+\frac {11}{8}}{4 \left (\tanh \left (\frac {x}{2}\right )^{2}-2 \tanh \left (\frac {x}{2}\right )-1\right )^{2}}+\frac {19 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\left (2 \tanh \left (\frac {x}{2}\right )-2\right ) \sqrt {2}}{4}\right )}{64}\) \(124\)

Input:

int(1/(1-sinh(x)^2)^3,x,method=_RETURNVERBOSE)
 

Output:

-1/16*(19*exp(6*x)-171*exp(4*x)+89*exp(2*x)-9)/(exp(4*x)-6*exp(2*x)+1)^2+1 
9/128*2^(1/2)*ln(exp(2*x)-3+2*2^(1/2))-19/128*2^(1/2)*ln(exp(2*x)-3-2*2^(1 
/2))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 575 vs. \(2 (41) = 82\).

Time = 0.09 (sec) , antiderivative size = 575, normalized size of antiderivative = 10.45 \[ \int \frac {1}{\left (1-\sinh ^2(x)\right )^3} \, dx=\text {Too large to display} \] Input:

integrate(1/(1-sinh(x)^2)^3,x, algorithm="fricas")
 

Output:

-1/128*(152*cosh(x)^6 + 912*cosh(x)*sinh(x)^5 + 152*sinh(x)^6 + 456*(5*cos 
h(x)^2 - 3)*sinh(x)^4 - 1368*cosh(x)^4 + 608*(5*cosh(x)^3 - 9*cosh(x))*sin 
h(x)^3 + 8*(285*cosh(x)^4 - 1026*cosh(x)^2 + 89)*sinh(x)^2 + 712*cosh(x)^2 
 - 19*(sqrt(2)*cosh(x)^8 + 8*sqrt(2)*cosh(x)*sinh(x)^7 + sqrt(2)*sinh(x)^8 
 + 4*(7*sqrt(2)*cosh(x)^2 - 3*sqrt(2))*sinh(x)^6 - 12*sqrt(2)*cosh(x)^6 + 
8*(7*sqrt(2)*cosh(x)^3 - 9*sqrt(2)*cosh(x))*sinh(x)^5 + 2*(35*sqrt(2)*cosh 
(x)^4 - 90*sqrt(2)*cosh(x)^2 + 19*sqrt(2))*sinh(x)^4 + 38*sqrt(2)*cosh(x)^ 
4 + 8*(7*sqrt(2)*cosh(x)^5 - 30*sqrt(2)*cosh(x)^3 + 19*sqrt(2)*cosh(x))*si 
nh(x)^3 + 4*(7*sqrt(2)*cosh(x)^6 - 45*sqrt(2)*cosh(x)^4 + 57*sqrt(2)*cosh( 
x)^2 - 3*sqrt(2))*sinh(x)^2 - 12*sqrt(2)*cosh(x)^2 + 8*(sqrt(2)*cosh(x)^7 
- 9*sqrt(2)*cosh(x)^5 + 19*sqrt(2)*cosh(x)^3 - 3*sqrt(2)*cosh(x))*sinh(x) 
+ sqrt(2))*log(-(3*(2*sqrt(2) - 3)*cosh(x)^2 - 4*(3*sqrt(2) - 4)*cosh(x)*s 
inh(x) + 3*(2*sqrt(2) - 3)*sinh(x)^2 - 2*sqrt(2) + 3)/(cosh(x)^2 + sinh(x) 
^2 - 3)) + 16*(57*cosh(x)^5 - 342*cosh(x)^3 + 89*cosh(x))*sinh(x) - 72)/(c 
osh(x)^8 + 8*cosh(x)*sinh(x)^7 + sinh(x)^8 + 4*(7*cosh(x)^2 - 3)*sinh(x)^6 
 - 12*cosh(x)^6 + 8*(7*cosh(x)^3 - 9*cosh(x))*sinh(x)^5 + 2*(35*cosh(x)^4 
- 90*cosh(x)^2 + 19)*sinh(x)^4 + 38*cosh(x)^4 + 8*(7*cosh(x)^5 - 30*cosh(x 
)^3 + 19*cosh(x))*sinh(x)^3 + 4*(7*cosh(x)^6 - 45*cosh(x)^4 + 57*cosh(x)^2 
 - 3)*sinh(x)^2 - 12*cosh(x)^2 + 8*(cosh(x)^7 - 9*cosh(x)^5 + 19*cosh(x)^3 
 - 3*cosh(x))*sinh(x) + 1)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5666 vs. \(2 (51) = 102\).

Time = 11.67 (sec) , antiderivative size = 5666, normalized size of antiderivative = 103.02 \[ \int \frac {1}{\left (1-\sinh ^2(x)\right )^3} \, dx=\text {Too large to display} \] Input:

integrate(1/(1-sinh(x)**2)**3,x)
 

Output:

10001001174720*log(tanh(x/2) - 1 + sqrt(2))*tanh(x/2)**8/(33687582904320*s 
qrt(2)*tanh(x/2)**8 + 47641436627072*tanh(x/2)**8 - 571697239524864*tanh(x 
/2)**6 - 404250994851840*sqrt(2)*tanh(x/2)**6 + 1280128150364160*sqrt(2)*t 
anh(x/2)**4 + 1810374591828736*tanh(x/2)**4 - 571697239524864*tanh(x/2)**2 
 - 404250994851840*sqrt(2)*tanh(x/2)**2 + 33687582904320*sqrt(2) + 4764143 
6627072) + 7071775749331*sqrt(2)*log(tanh(x/2) - 1 + sqrt(2))*tanh(x/2)**8 
/(33687582904320*sqrt(2)*tanh(x/2)**8 + 47641436627072*tanh(x/2)**8 - 5716 
97239524864*tanh(x/2)**6 - 404250994851840*sqrt(2)*tanh(x/2)**6 + 12801281 
50364160*sqrt(2)*tanh(x/2)**4 + 1810374591828736*tanh(x/2)**4 - 5716972395 
24864*tanh(x/2)**2 - 404250994851840*sqrt(2)*tanh(x/2)**2 + 33687582904320 
*sqrt(2) + 47641436627072) - 84861308991972*sqrt(2)*log(tanh(x/2) - 1 + sq 
rt(2))*tanh(x/2)**6/(33687582904320*sqrt(2)*tanh(x/2)**8 + 47641436627072* 
tanh(x/2)**8 - 571697239524864*tanh(x/2)**6 - 404250994851840*sqrt(2)*tanh 
(x/2)**6 + 1280128150364160*sqrt(2)*tanh(x/2)**4 + 1810374591828736*tanh(x 
/2)**4 - 571697239524864*tanh(x/2)**2 - 404250994851840*sqrt(2)*tanh(x/2)* 
*2 + 33687582904320*sqrt(2) + 47641436627072) - 120012014096640*log(tanh(x 
/2) - 1 + sqrt(2))*tanh(x/2)**6/(33687582904320*sqrt(2)*tanh(x/2)**8 + 476 
41436627072*tanh(x/2)**8 - 571697239524864*tanh(x/2)**6 - 404250994851840* 
sqrt(2)*tanh(x/2)**6 + 1280128150364160*sqrt(2)*tanh(x/2)**4 + 18103745918 
28736*tanh(x/2)**4 - 571697239524864*tanh(x/2)**2 - 404250994851840*sqr...
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 111 vs. \(2 (41) = 82\).

Time = 0.11 (sec) , antiderivative size = 111, normalized size of antiderivative = 2.02 \[ \int \frac {1}{\left (1-\sinh ^2(x)\right )^3} \, dx=\frac {19}{128} \, \sqrt {2} \log \left (-\frac {\sqrt {2} - e^{\left (-x\right )} + 1}{\sqrt {2} + e^{\left (-x\right )} - 1}\right ) - \frac {19}{128} \, \sqrt {2} \log \left (-\frac {\sqrt {2} - e^{\left (-x\right )} - 1}{\sqrt {2} + e^{\left (-x\right )} + 1}\right ) - \frac {89 \, e^{\left (-2 \, x\right )} - 171 \, e^{\left (-4 \, x\right )} + 19 \, e^{\left (-6 \, x\right )} - 9}{16 \, {\left (12 \, e^{\left (-2 \, x\right )} - 38 \, e^{\left (-4 \, x\right )} + 12 \, e^{\left (-6 \, x\right )} - e^{\left (-8 \, x\right )} - 1\right )}} \] Input:

integrate(1/(1-sinh(x)^2)^3,x, algorithm="maxima")
 

Output:

19/128*sqrt(2)*log(-(sqrt(2) - e^(-x) + 1)/(sqrt(2) + e^(-x) - 1)) - 19/12 
8*sqrt(2)*log(-(sqrt(2) - e^(-x) - 1)/(sqrt(2) + e^(-x) + 1)) - 1/16*(89*e 
^(-2*x) - 171*e^(-4*x) + 19*e^(-6*x) - 9)/(12*e^(-2*x) - 38*e^(-4*x) + 12* 
e^(-6*x) - e^(-8*x) - 1)
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.35 \[ \int \frac {1}{\left (1-\sinh ^2(x)\right )^3} \, dx=-\frac {19}{128} \, \sqrt {2} \log \left (\frac {{\left | -4 \, \sqrt {2} + 2 \, e^{\left (2 \, x\right )} - 6 \right |}}{{\left | 4 \, \sqrt {2} + 2 \, e^{\left (2 \, x\right )} - 6 \right |}}\right ) - \frac {19 \, e^{\left (6 \, x\right )} - 171 \, e^{\left (4 \, x\right )} + 89 \, e^{\left (2 \, x\right )} - 9}{16 \, {\left (e^{\left (4 \, x\right )} - 6 \, e^{\left (2 \, x\right )} + 1\right )}^{2}} \] Input:

integrate(1/(1-sinh(x)^2)^3,x, algorithm="giac")
 

Output:

-19/128*sqrt(2)*log(abs(-4*sqrt(2) + 2*e^(2*x) - 6)/abs(4*sqrt(2) + 2*e^(2 
*x) - 6)) - 1/16*(19*e^(6*x) - 171*e^(4*x) + 89*e^(2*x) - 9)/(e^(4*x) - 6* 
e^(2*x) + 1)^2
 

Mupad [B] (verification not implemented)

Time = 1.74 (sec) , antiderivative size = 112, normalized size of antiderivative = 2.04 \[ \int \frac {1}{\left (1-\sinh ^2(x)\right )^3} \, dx=\frac {17\,{\mathrm {e}}^{2\,x}-3}{38\,{\mathrm {e}}^{4\,x}-12\,{\mathrm {e}}^{2\,x}-12\,{\mathrm {e}}^{6\,x}+{\mathrm {e}}^{8\,x}+1}-\frac {19\,\sqrt {2}\,\ln \left (\frac {19\,{\mathrm {e}}^{2\,x}}{8}-\frac {19\,\sqrt {2}\,\left (12\,{\mathrm {e}}^{2\,x}-4\right )}{128}\right )}{128}+\frac {19\,\sqrt {2}\,\ln \left (\frac {19\,{\mathrm {e}}^{2\,x}}{8}+\frac {19\,\sqrt {2}\,\left (12\,{\mathrm {e}}^{2\,x}-4\right )}{128}\right )}{128}-\frac {\frac {19\,{\mathrm {e}}^{2\,x}}{16}-\frac {57}{16}}{{\mathrm {e}}^{4\,x}-6\,{\mathrm {e}}^{2\,x}+1} \] Input:

int(-1/(sinh(x)^2 - 1)^3,x)
 

Output:

(17*exp(2*x) - 3)/(38*exp(4*x) - 12*exp(2*x) - 12*exp(6*x) + exp(8*x) + 1) 
 - (19*2^(1/2)*log((19*exp(2*x))/8 - (19*2^(1/2)*(12*exp(2*x) - 4))/128))/ 
128 + (19*2^(1/2)*log((19*exp(2*x))/8 + (19*2^(1/2)*(12*exp(2*x) - 4))/128 
))/128 - ((19*exp(2*x))/16 - 57/16)/(exp(4*x) - 6*exp(2*x) + 1)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 396, normalized size of antiderivative = 7.20 \[ \int \frac {1}{\left (1-\sinh ^2(x)\right )^3} \, dx=\frac {-57 e^{8 x} \sqrt {2}\, \mathrm {log}\left (e^{x}-\sqrt {2}-1\right )+57 e^{8 x} \sqrt {2}\, \mathrm {log}\left (e^{x}-\sqrt {2}+1\right )+57 e^{8 x} \sqrt {2}\, \mathrm {log}\left (e^{x}+\sqrt {2}-1\right )-57 e^{8 x} \sqrt {2}\, \mathrm {log}\left (e^{x}+\sqrt {2}+1\right )-38 e^{8 x}+684 e^{6 x} \sqrt {2}\, \mathrm {log}\left (e^{x}-\sqrt {2}-1\right )-684 e^{6 x} \sqrt {2}\, \mathrm {log}\left (e^{x}-\sqrt {2}+1\right )-684 e^{6 x} \sqrt {2}\, \mathrm {log}\left (e^{x}+\sqrt {2}-1\right )+684 e^{6 x} \sqrt {2}\, \mathrm {log}\left (e^{x}+\sqrt {2}+1\right )-2166 e^{4 x} \sqrt {2}\, \mathrm {log}\left (e^{x}-\sqrt {2}-1\right )+2166 e^{4 x} \sqrt {2}\, \mathrm {log}\left (e^{x}-\sqrt {2}+1\right )+2166 e^{4 x} \sqrt {2}\, \mathrm {log}\left (e^{x}+\sqrt {2}-1\right )-2166 e^{4 x} \sqrt {2}\, \mathrm {log}\left (e^{x}+\sqrt {2}+1\right )+2660 e^{4 x}+684 e^{2 x} \sqrt {2}\, \mathrm {log}\left (e^{x}-\sqrt {2}-1\right )-684 e^{2 x} \sqrt {2}\, \mathrm {log}\left (e^{x}-\sqrt {2}+1\right )-684 e^{2 x} \sqrt {2}\, \mathrm {log}\left (e^{x}+\sqrt {2}-1\right )+684 e^{2 x} \sqrt {2}\, \mathrm {log}\left (e^{x}+\sqrt {2}+1\right )-1680 e^{2 x}-57 \sqrt {2}\, \mathrm {log}\left (e^{x}-\sqrt {2}-1\right )+57 \sqrt {2}\, \mathrm {log}\left (e^{x}-\sqrt {2}+1\right )+57 \sqrt {2}\, \mathrm {log}\left (e^{x}+\sqrt {2}-1\right )-57 \sqrt {2}\, \mathrm {log}\left (e^{x}+\sqrt {2}+1\right )+178}{384 e^{8 x}-4608 e^{6 x}+14592 e^{4 x}-4608 e^{2 x}+384} \] Input:

int(1/(1-sinh(x)^2)^3,x)
 

Output:

( - 57*e**(8*x)*sqrt(2)*log(e**x - sqrt(2) - 1) + 57*e**(8*x)*sqrt(2)*log( 
e**x - sqrt(2) + 1) + 57*e**(8*x)*sqrt(2)*log(e**x + sqrt(2) - 1) - 57*e** 
(8*x)*sqrt(2)*log(e**x + sqrt(2) + 1) - 38*e**(8*x) + 684*e**(6*x)*sqrt(2) 
*log(e**x - sqrt(2) - 1) - 684*e**(6*x)*sqrt(2)*log(e**x - sqrt(2) + 1) - 
684*e**(6*x)*sqrt(2)*log(e**x + sqrt(2) - 1) + 684*e**(6*x)*sqrt(2)*log(e* 
*x + sqrt(2) + 1) - 2166*e**(4*x)*sqrt(2)*log(e**x - sqrt(2) - 1) + 2166*e 
**(4*x)*sqrt(2)*log(e**x - sqrt(2) + 1) + 2166*e**(4*x)*sqrt(2)*log(e**x + 
 sqrt(2) - 1) - 2166*e**(4*x)*sqrt(2)*log(e**x + sqrt(2) + 1) + 2660*e**(4 
*x) + 684*e**(2*x)*sqrt(2)*log(e**x - sqrt(2) - 1) - 684*e**(2*x)*sqrt(2)* 
log(e**x - sqrt(2) + 1) - 684*e**(2*x)*sqrt(2)*log(e**x + sqrt(2) - 1) + 6 
84*e**(2*x)*sqrt(2)*log(e**x + sqrt(2) + 1) - 1680*e**(2*x) - 57*sqrt(2)*l 
og(e**x - sqrt(2) - 1) + 57*sqrt(2)*log(e**x - sqrt(2) + 1) + 57*sqrt(2)*l 
og(e**x + sqrt(2) - 1) - 57*sqrt(2)*log(e**x + sqrt(2) + 1) + 178)/(384*(e 
**(8*x) - 12*e**(6*x) + 38*e**(4*x) - 12*e**(2*x) + 1))