\(\int \frac {\sinh ^7(c+d x)}{(a-b \sinh ^4(c+d x))^2} \, dx\) [217]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 210 \[ \int \frac {\sinh ^7(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\frac {\left (3 \sqrt {a}-4 \sqrt {b}\right ) \arctan \left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{8 \left (\sqrt {a}-\sqrt {b}\right )^{3/2} b^{7/4} d}-\frac {\left (3 \sqrt {a}+4 \sqrt {b}\right ) \text {arctanh}\left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{8 \left (\sqrt {a}+\sqrt {b}\right )^{3/2} b^{7/4} d}-\frac {a \cosh (c+d x) \left (2-\cosh ^2(c+d x)\right )}{4 (a-b) b d \left (a-b+2 b \cosh ^2(c+d x)-b \cosh ^4(c+d x)\right )} \] Output:

1/8*(3*a^(1/2)-4*b^(1/2))*arctan(b^(1/4)*cosh(d*x+c)/(a^(1/2)-b^(1/2))^(1/ 
2))/(a^(1/2)-b^(1/2))^(3/2)/b^(7/4)/d-1/8*(3*a^(1/2)+4*b^(1/2))*arctanh(b^ 
(1/4)*cosh(d*x+c)/(a^(1/2)+b^(1/2))^(1/2))/(a^(1/2)+b^(1/2))^(3/2)/b^(7/4) 
/d-1/4*a*cosh(d*x+c)*(2-cosh(d*x+c)^2)/(a-b)/b/d/(a-b+2*b*cosh(d*x+c)^2-b* 
cosh(d*x+c)^4)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 4.14 (sec) , antiderivative size = 737, normalized size of antiderivative = 3.51 \[ \int \frac {\sinh ^7(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx =\text {Too large to display} \] Input:

Integrate[Sinh[c + d*x]^7/(a - b*Sinh[c + d*x]^4)^2,x]
 

Output:

-1/32*((-16*a*(-5*Cosh[c + d*x] + Cosh[3*(c + d*x)]))/(8*a - 3*b + 4*b*Cos 
h[2*(c + d*x)] - b*Cosh[4*(c + d*x)]) + RootSum[b - 4*b*#1^2 - 16*a*#1^4 + 
 6*b*#1^4 - 4*b*#1^6 + b*#1^8 & , (3*a*c - 4*b*c + 3*a*d*x - 4*b*d*x + 6*a 
*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[ 
(c + d*x)/2]*#1] - 8*b*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[( 
c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1] - 5*a*c*#1^2 + 12*b*c*#1^2 - 5*a*d* 
x*#1^2 + 12*b*d*x*#1^2 - 10*a*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + 
 Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^2 + 24*b*Log[-Cosh[(c + d 
*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]* 
#1^2 + 5*a*c*#1^4 - 12*b*c*#1^4 + 5*a*d*x*#1^4 - 12*b*d*x*#1^4 + 10*a*Log[ 
-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + 
d*x)/2]*#1]*#1^4 - 24*b*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[ 
(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^4 - 3*a*c*#1^6 + 4*b*c*#1^6 - 3 
*a*d*x*#1^6 + 4*b*d*x*#1^6 - 6*a*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2 
] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^6 + 8*b*Log[-Cosh[(c + 
 d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1 
]*#1^6)/(-(b*#1) - 8*a*#1^3 + 3*b*#1^3 - 3*b*#1^5 + b*#1^7) & ])/((a - b)* 
b*d)
 

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.09, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 26, 3694, 1517, 27, 1480, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sinh ^7(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {i \sin (i c+i d x)^7}{\left (a-b \sin (i c+i d x)^4\right )^2}dx\)

\(\Big \downarrow \) 26

\(\displaystyle i \int \frac {\sin (i c+i d x)^7}{\left (a-b \sin (i c+i d x)^4\right )^2}dx\)

\(\Big \downarrow \) 3694

\(\displaystyle -\frac {\int \frac {\left (1-\cosh ^2(c+d x)\right )^3}{\left (-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)+a-b\right )^2}d\cosh (c+d x)}{d}\)

\(\Big \downarrow \) 1517

\(\displaystyle -\frac {\frac {a \cosh (c+d x) \left (2-\cosh ^2(c+d x)\right )}{4 b (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}-\frac {\int \frac {2 a \left (2 (a-2 b)-(3 a-4 b) \cosh ^2(c+d x)\right )}{-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)+a-b}d\cosh (c+d x)}{8 a b (a-b)}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {a \cosh (c+d x) \left (2-\cosh ^2(c+d x)\right )}{4 b (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}-\frac {\int \frac {2 (a-2 b)-(3 a-4 b) \cosh ^2(c+d x)}{-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)+a-b}d\cosh (c+d x)}{4 b (a-b)}}{d}\)

\(\Big \downarrow \) 1480

\(\displaystyle -\frac {\frac {a \cosh (c+d x) \left (2-\cosh ^2(c+d x)\right )}{4 b (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}-\frac {-\frac {1}{2} \left (-\sqrt {a} \sqrt {b}+3 a-4 b\right ) \int \frac {1}{-b \cosh ^2(c+d x)-\left (\sqrt {a}-\sqrt {b}\right ) \sqrt {b}}d\cosh (c+d x)-\frac {1}{2} \left (\sqrt {a} \sqrt {b}+3 a-4 b\right ) \int \frac {1}{\left (\sqrt {a}+\sqrt {b}\right ) \sqrt {b}-b \cosh ^2(c+d x)}d\cosh (c+d x)}{4 b (a-b)}}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {\frac {a \cosh (c+d x) \left (2-\cosh ^2(c+d x)\right )}{4 b (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}-\frac {\frac {\left (-\sqrt {a} \sqrt {b}+3 a-4 b\right ) \arctan \left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 b^{3/4} \sqrt {\sqrt {a}-\sqrt {b}}}-\frac {1}{2} \left (\sqrt {a} \sqrt {b}+3 a-4 b\right ) \int \frac {1}{\left (\sqrt {a}+\sqrt {b}\right ) \sqrt {b}-b \cosh ^2(c+d x)}d\cosh (c+d x)}{4 b (a-b)}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {\frac {a \cosh (c+d x) \left (2-\cosh ^2(c+d x)\right )}{4 b (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}-\frac {\frac {\left (-\sqrt {a} \sqrt {b}+3 a-4 b\right ) \arctan \left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 b^{3/4} \sqrt {\sqrt {a}-\sqrt {b}}}-\frac {\left (\sqrt {a} \sqrt {b}+3 a-4 b\right ) \text {arctanh}\left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{2 b^{3/4} \sqrt {\sqrt {a}+\sqrt {b}}}}{4 b (a-b)}}{d}\)

Input:

Int[Sinh[c + d*x]^7/(a - b*Sinh[c + d*x]^4)^2,x]
 

Output:

-((-1/4*(((3*a - Sqrt[a]*Sqrt[b] - 4*b)*ArcTan[(b^(1/4)*Cosh[c + d*x])/Sqr 
t[Sqrt[a] - Sqrt[b]]])/(2*Sqrt[Sqrt[a] - Sqrt[b]]*b^(3/4)) - ((3*a + Sqrt[ 
a]*Sqrt[b] - 4*b)*ArcTanh[(b^(1/4)*Cosh[c + d*x])/Sqrt[Sqrt[a] + Sqrt[b]]] 
)/(2*Sqrt[Sqrt[a] + Sqrt[b]]*b^(3/4)))/((a - b)*b) + (a*Cosh[c + d*x]*(2 - 
 Cosh[c + d*x]^2))/(4*(a - b)*b*(a - b + 2*b*Cosh[c + d*x]^2 - b*Cosh[c + 
d*x]^4)))/d)
 

Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1517
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x 
_Symbol] :> With[{f = Coeff[PolynomialRemainder[(d + e*x^2)^q, a + b*x^2 + 
c*x^4, x], x, 0], g = Coeff[PolynomialRemainder[(d + e*x^2)^q, a + b*x^2 + 
c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^4)^(p + 1)*((a*b*g - f*(b^2 - 2* 
a*c) - c*(b*f - 2*a*g)*x^2)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a* 
(p + 1)*(b^2 - 4*a*c))   Int[(a + b*x^2 + c*x^4)^(p + 1)*ExpandToSum[2*a*(p 
 + 1)*(b^2 - 4*a*c)*PolynomialQuotient[(d + e*x^2)^q, a + b*x^2 + c*x^4, x] 
 + b^2*f*(2*p + 3) - 2*a*c*f*(4*p + 5) - a*b*g + c*(4*p + 7)*(b*f - 2*a*g)* 
x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ 
[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[q, 1] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3694
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-ff/f 
Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - 2*b*ff^2*x^2 + b*ff^4*x^4)^p, 
 x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 
 1)/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(433\) vs. \(2(164)=328\).

Time = 8.11 (sec) , antiderivative size = 434, normalized size of antiderivative = 2.07

method result size
derivativedivides \(\frac {128 a^{2} \left (\frac {\frac {-\frac {\left (a b -\sqrt {a b}\, a +2 \sqrt {a b}\, b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{2 a^{2} \left (a -b \right )}-\frac {b +\sqrt {a b}}{2 a \left (a -b \right )}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\frac {4 \sqrt {a b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a}+1}+\frac {\left (3 \sqrt {a b}\, a -4 \sqrt {a b}\, b -a b \right ) \arctan \left (\frac {2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}-2 a}{4 \sqrt {-a b +\sqrt {a b}\, a}}\right )}{4 a \left (a -b \right ) \sqrt {-a b +\sqrt {a b}\, a}}}{256 a \,b^{2}}-\frac {\frac {\frac {\left (\sqrt {a b}\, a -2 \sqrt {a b}\, b +a b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{2 a^{2} \left (a -b \right )}+\frac {b -\sqrt {a b}}{2 a \left (a -b \right )}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\frac {4 \sqrt {a b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a}-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}-\frac {\left (3 \sqrt {a b}\, a -4 \sqrt {a b}\, b +a b \right ) \arctan \left (\frac {-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}+2 a}{4 \sqrt {-a b -\sqrt {a b}\, a}}\right )}{4 a \left (a -b \right ) \sqrt {-a b -\sqrt {a b}\, a}}}{256 a \,b^{2}}\right )}{d}\) \(434\)
default \(\frac {128 a^{2} \left (\frac {\frac {-\frac {\left (a b -\sqrt {a b}\, a +2 \sqrt {a b}\, b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{2 a^{2} \left (a -b \right )}-\frac {b +\sqrt {a b}}{2 a \left (a -b \right )}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\frac {4 \sqrt {a b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a}+1}+\frac {\left (3 \sqrt {a b}\, a -4 \sqrt {a b}\, b -a b \right ) \arctan \left (\frac {2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}-2 a}{4 \sqrt {-a b +\sqrt {a b}\, a}}\right )}{4 a \left (a -b \right ) \sqrt {-a b +\sqrt {a b}\, a}}}{256 a \,b^{2}}-\frac {\frac {\frac {\left (\sqrt {a b}\, a -2 \sqrt {a b}\, b +a b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{2 a^{2} \left (a -b \right )}+\frac {b -\sqrt {a b}}{2 a \left (a -b \right )}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\frac {4 \sqrt {a b}\, \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a}-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}-\frac {\left (3 \sqrt {a b}\, a -4 \sqrt {a b}\, b +a b \right ) \arctan \left (\frac {-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}+2 a}{4 \sqrt {-a b -\sqrt {a b}\, a}}\right )}{4 a \left (a -b \right ) \sqrt {-a b -\sqrt {a b}\, a}}}{256 a \,b^{2}}\right )}{d}\) \(434\)
risch \(\frac {{\mathrm e}^{d x +c} a \left ({\mathrm e}^{6 d x +6 c}-5 \,{\mathrm e}^{4 d x +4 c}-5 \,{\mathrm e}^{2 d x +2 c}+1\right )}{2 b d \left (a -b \right ) \left (-{\mathrm e}^{8 d x +8 c} b +4 \,{\mathrm e}^{6 d x +6 c} b +16 \,{\mathrm e}^{4 d x +4 c} a -6 b \,{\mathrm e}^{4 d x +4 c}+4 \,{\mathrm e}^{2 d x +2 c} b -b \right )}+\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (65536 a^{3} b^{7} d^{4}-196608 a^{2} b^{8} d^{4}+196608 a \,b^{9} d^{4}-65536 d^{4} b^{10}\right ) \textit {\_Z}^{4}+\left (1536 a^{2} b^{4} d^{2}-7680 a \,b^{5} d^{2}+8192 b^{6} d^{2}\right ) \textit {\_Z}^{2}-81 a^{2}+288 a b -256 b^{2}\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{2 d x +2 c}+\left (\left (-\frac {24576 a^{4} b^{5} d^{3}}{81 a^{3}-405 a^{2} b +680 b^{2} a -384 b^{3}}+\frac {114688 a^{3} b^{6} d^{3}}{81 a^{3}-405 a^{2} b +680 b^{2} a -384 b^{3}}-\frac {196608 a^{2} b^{7} d^{3}}{81 a^{3}-405 a^{2} b +680 b^{2} a -384 b^{3}}+\frac {147456 a \,b^{8} d^{3}}{81 a^{3}-405 a^{2} b +680 b^{2} a -384 b^{3}}-\frac {40960 b^{9} d^{3}}{81 a^{3}-405 a^{2} b +680 b^{2} a -384 b^{3}}\right ) \textit {\_R}^{3}+\left (-\frac {864 a^{3} b^{2} d}{81 a^{3}-405 a^{2} b +680 b^{2} a -384 b^{3}}+\frac {4928 a^{2} b^{3} d}{81 a^{3}-405 a^{2} b +680 b^{2} a -384 b^{3}}-\frac {9184 a \,b^{4} d}{81 a^{3}-405 a^{2} b +680 b^{2} a -384 b^{3}}+\frac {5632 b^{5} d}{81 a^{3}-405 a^{2} b +680 b^{2} a -384 b^{3}}\right ) \textit {\_R} \right ) {\mathrm e}^{d x +c}+1\right )\right )\) \(555\)

Input:

int(sinh(d*x+c)^7/(a-b*sinh(d*x+c)^4)^2,x,method=_RETURNVERBOSE)
 

Output:

128/d*a^2*(1/256/a/b^2*((-1/2*(a*b-(a*b)^(1/2)*a+2*(a*b)^(1/2)*b)/a^2/(a-b 
)*tanh(1/2*d*x+1/2*c)^2-1/2*(b+(a*b)^(1/2))/a/(a-b))/(tanh(1/2*d*x+1/2*c)^ 
4-2*tanh(1/2*d*x+1/2*c)^2+4*(a*b)^(1/2)/a*tanh(1/2*d*x+1/2*c)^2+1)+1/4*(3* 
(a*b)^(1/2)*a-4*(a*b)^(1/2)*b-a*b)/a/(a-b)/(-a*b+(a*b)^(1/2)*a)^(1/2)*arct 
an(1/4*(2*tanh(1/2*d*x+1/2*c)^2*a+4*(a*b)^(1/2)-2*a)/(-a*b+(a*b)^(1/2)*a)^ 
(1/2)))-1/256/a/b^2*((1/2*((a*b)^(1/2)*a-2*(a*b)^(1/2)*b+a*b)/a^2/(a-b)*ta 
nh(1/2*d*x+1/2*c)^2+1/2*(b-(a*b)^(1/2))/a/(a-b))/(tanh(1/2*d*x+1/2*c)^4-4* 
(a*b)^(1/2)/a*tanh(1/2*d*x+1/2*c)^2-2*tanh(1/2*d*x+1/2*c)^2+1)-1/4*(3*(a*b 
)^(1/2)*a-4*(a*b)^(1/2)*b+a*b)/a/(a-b)/(-a*b-(a*b)^(1/2)*a)^(1/2)*arctan(1 
/4*(-2*tanh(1/2*d*x+1/2*c)^2*a+4*(a*b)^(1/2)+2*a)/(-a*b-(a*b)^(1/2)*a)^(1/ 
2))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 6266 vs. \(2 (161) = 322\).

Time = 0.24 (sec) , antiderivative size = 6266, normalized size of antiderivative = 29.84 \[ \int \frac {\sinh ^7(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(sinh(d*x+c)^7/(a-b*sinh(d*x+c)^4)^2,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sinh ^7(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\text {Timed out} \] Input:

integrate(sinh(d*x+c)**7/(a-b*sinh(d*x+c)**4)**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\sinh ^7(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\int { \frac {\sinh \left (d x + c\right )^{7}}{{\left (b \sinh \left (d x + c\right )^{4} - a\right )}^{2}} \,d x } \] Input:

integrate(sinh(d*x+c)^7/(a-b*sinh(d*x+c)^4)^2,x, algorithm="maxima")
 

Output:

-1/2*(a*e^(7*d*x + 7*c) - 5*a*e^(5*d*x + 5*c) - 5*a*e^(3*d*x + 3*c) + a*e^ 
(d*x + c))/(a*b^2*d - b^3*d + (a*b^2*d*e^(8*c) - b^3*d*e^(8*c))*e^(8*d*x) 
- 4*(a*b^2*d*e^(6*c) - b^3*d*e^(6*c))*e^(6*d*x) - 2*(8*a^2*b*d*e^(4*c) - 1 
1*a*b^2*d*e^(4*c) + 3*b^3*d*e^(4*c))*e^(4*d*x) - 4*(a*b^2*d*e^(2*c) - b^3* 
d*e^(2*c))*e^(2*d*x)) + 1/128*integrate(64*((3*a*e^(7*c) - 4*b*e^(7*c))*e^ 
(7*d*x) - (5*a*e^(5*c) - 12*b*e^(5*c))*e^(5*d*x) + (5*a*e^(3*c) - 12*b*e^( 
3*c))*e^(3*d*x) - (3*a*e^c - 4*b*e^c)*e^(d*x))/(a*b^2 - b^3 + (a*b^2*e^(8* 
c) - b^3*e^(8*c))*e^(8*d*x) - 4*(a*b^2*e^(6*c) - b^3*e^(6*c))*e^(6*d*x) - 
2*(8*a^2*b*e^(4*c) - 11*a*b^2*e^(4*c) + 3*b^3*e^(4*c))*e^(4*d*x) - 4*(a*b^ 
2*e^(2*c) - b^3*e^(2*c))*e^(2*d*x)), x)
 

Giac [F]

\[ \int \frac {\sinh ^7(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\int { \frac {\sinh \left (d x + c\right )^{7}}{{\left (b \sinh \left (d x + c\right )^{4} - a\right )}^{2}} \,d x } \] Input:

integrate(sinh(d*x+c)^7/(a-b*sinh(d*x+c)^4)^2,x, algorithm="giac")
 

Output:

sage0*x
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sinh ^7(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\int \frac {{\mathrm {sinh}\left (c+d\,x\right )}^7}{{\left (a-b\,{\mathrm {sinh}\left (c+d\,x\right )}^4\right )}^2} \,d x \] Input:

int(sinh(c + d*x)^7/(a - b*sinh(c + d*x)^4)^2,x)
 

Output:

int(sinh(c + d*x)^7/(a - b*sinh(c + d*x)^4)^2, x)
 

Reduce [F]

\[ \int \frac {\sinh ^7(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\text {too large to display} \] Input:

int(sinh(d*x+c)^7/(a-b*sinh(d*x+c)^4)^2,x)
 

Output:

(2*e**c*( - 16128*e**(14*c + 8*d*x)*int(e**(7*d*x)/(e**(16*c + 16*d*x)*b** 
2 - 8*e**(14*c + 14*d*x)*b**2 - 32*e**(12*c + 12*d*x)*a*b + 28*e**(12*c + 
12*d*x)*b**2 + 128*e**(10*c + 10*d*x)*a*b - 56*e**(10*c + 10*d*x)*b**2 + 2 
56*e**(8*c + 8*d*x)*a**2 - 192*e**(8*c + 8*d*x)*a*b + 70*e**(8*c + 8*d*x)* 
b**2 + 128*e**(6*c + 6*d*x)*a*b - 56*e**(6*c + 6*d*x)*b**2 - 32*e**(4*c + 
4*d*x)*a*b + 28*e**(4*c + 4*d*x)*b**2 - 8*e**(2*c + 2*d*x)*b**2 + b**2),x) 
*a**2*b*d - 2736*e**(14*c + 8*d*x)*int(e**(7*d*x)/(e**(16*c + 16*d*x)*b**2 
 - 8*e**(14*c + 14*d*x)*b**2 - 32*e**(12*c + 12*d*x)*a*b + 28*e**(12*c + 1 
2*d*x)*b**2 + 128*e**(10*c + 10*d*x)*a*b - 56*e**(10*c + 10*d*x)*b**2 + 25 
6*e**(8*c + 8*d*x)*a**2 - 192*e**(8*c + 8*d*x)*a*b + 70*e**(8*c + 8*d*x)*b 
**2 + 128*e**(6*c + 6*d*x)*a*b - 56*e**(6*c + 6*d*x)*b**2 - 32*e**(4*c + 4 
*d*x)*a*b + 28*e**(4*c + 4*d*x)*b**2 - 8*e**(2*c + 2*d*x)*b**2 + b**2),x)* 
a*b**2*d + 384*e**(14*c + 8*d*x)*int(e**(7*d*x)/(e**(16*c + 16*d*x)*b**2 - 
 8*e**(14*c + 14*d*x)*b**2 - 32*e**(12*c + 12*d*x)*a*b + 28*e**(12*c + 12* 
d*x)*b**2 + 128*e**(10*c + 10*d*x)*a*b - 56*e**(10*c + 10*d*x)*b**2 + 256* 
e**(8*c + 8*d*x)*a**2 - 192*e**(8*c + 8*d*x)*a*b + 70*e**(8*c + 8*d*x)*b** 
2 + 128*e**(6*c + 6*d*x)*a*b - 56*e**(6*c + 6*d*x)*b**2 - 32*e**(4*c + 4*d 
*x)*a*b + 28*e**(4*c + 4*d*x)*b**2 - 8*e**(2*c + 2*d*x)*b**2 + b**2),x)*b* 
*3*d - 40704*e**(12*c + 8*d*x)*int(e**(5*d*x)/(e**(16*c + 16*d*x)*b**2 - 8 
*e**(14*c + 14*d*x)*b**2 - 32*e**(12*c + 12*d*x)*a*b + 28*e**(12*c + 12...