\(\int \frac {\sinh ^9(c+d x)}{(a-b \sinh ^4(c+d x))^3} \, dx\) [228]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 315 \[ \int \frac {\sinh ^9(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx=\frac {\left (5 a-14 \sqrt {a} \sqrt {b}+12 b\right ) \arctan \left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{64 \sqrt {a} \left (\sqrt {a}-\sqrt {b}\right )^{5/2} b^{9/4} d}+\frac {\left (5 a+14 \sqrt {a} \sqrt {b}+12 b\right ) \text {arctanh}\left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{64 \sqrt {a} \left (\sqrt {a}+\sqrt {b}\right )^{5/2} b^{9/4} d}+\frac {a \cosh (c+d x) \left (a+b-b \cosh ^2(c+d x)\right )}{8 (a-b) b^2 d \left (a-b+2 b \cosh ^2(c+d x)-b \cosh ^4(c+d x)\right )^2}-\frac {\cosh (c+d x) \left (9 a^2-11 a b-10 b^2-2 (2 a-5 b) b \cosh ^2(c+d x)\right )}{32 (a-b)^2 b^2 d \left (a-b+2 b \cosh ^2(c+d x)-b \cosh ^4(c+d x)\right )} \] Output:

1/64*(5*a-14*a^(1/2)*b^(1/2)+12*b)*arctan(b^(1/4)*cosh(d*x+c)/(a^(1/2)-b^( 
1/2))^(1/2))/a^(1/2)/(a^(1/2)-b^(1/2))^(5/2)/b^(9/4)/d+1/64*(5*a+14*a^(1/2 
)*b^(1/2)+12*b)*arctanh(b^(1/4)*cosh(d*x+c)/(a^(1/2)+b^(1/2))^(1/2))/a^(1/ 
2)/(a^(1/2)+b^(1/2))^(5/2)/b^(9/4)/d+1/8*a*cosh(d*x+c)*(a+b-b*cosh(d*x+c)^ 
2)/(a-b)/b^2/d/(a-b+2*b*cosh(d*x+c)^2-b*cosh(d*x+c)^4)^2-1/32*cosh(d*x+c)* 
(9*a^2-11*a*b-10*b^2-2*(2*a-5*b)*b*cosh(d*x+c)^2)/(a-b)^2/b^2/d/(a-b+2*b*c 
osh(d*x+c)^2-b*cosh(d*x+c)^4)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 7.36 (sec) , antiderivative size = 1021, normalized size of antiderivative = 3.24 \[ \int \frac {\sinh ^9(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx =\text {Too large to display} \] Input:

Integrate[Sinh[c + d*x]^9/(a - b*Sinh[c + d*x]^4)^3,x]
 

Output:

((32*Cosh[c + d*x]*(-9*a^2 + 13*a*b + 5*b^2 + (2*a - 5*b)*b*Cosh[2*(c + d* 
x)]))/(8*a - 3*b + 4*b*Cosh[2*(c + d*x)] - b*Cosh[4*(c + d*x)]) + (512*a*( 
a - b)*Cosh[c + d*x]*(2*a + b - b*Cosh[2*(c + d*x)]))/(-8*a + 3*b - 4*b*Co 
sh[2*(c + d*x)] + b*Cosh[4*(c + d*x)])^2 - RootSum[b - 4*b*#1^2 - 16*a*#1^ 
4 + 6*b*#1^4 - 4*b*#1^6 + b*#1^8 & , (-2*a*b*c + 5*b^2*c - 2*a*b*d*x + 5*b 
^2*d*x - 4*a*b*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x) 
/2]*#1 - Sinh[(c + d*x)/2]*#1] + 10*b^2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + 
 d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1] - 10*a^2*c*#1^2 + 
28*a*b*c*#1^2 - 39*b^2*c*#1^2 - 10*a^2*d*x*#1^2 + 28*a*b*d*x*#1^2 - 39*b^2 
*d*x*#1^2 - 20*a^2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + 
d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^2 + 56*a*b*Log[-Cosh[(c + d*x)/2] - 
Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^2 - 78 
*b^2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - S 
inh[(c + d*x)/2]*#1]*#1^2 + 10*a^2*c*#1^4 - 28*a*b*c*#1^4 + 39*b^2*c*#1^4 
+ 10*a^2*d*x*#1^4 - 28*a*b*d*x*#1^4 + 39*b^2*d*x*#1^4 + 20*a^2*Log[-Cosh[( 
c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2] 
*#1]*#1^4 - 56*a*b*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + 
d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^4 + 78*b^2*Log[-Cosh[(c + d*x)/2] - 
Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^4 + 2* 
a*b*c*#1^6 - 5*b^2*c*#1^6 + 2*a*b*d*x*#1^6 - 5*b^2*d*x*#1^6 + 4*a*b*Log...
 

Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 370, normalized size of antiderivative = 1.17, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {3042, 26, 3694, 1517, 27, 2206, 27, 1480, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sinh ^9(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {i \sin (i c+i d x)^9}{\left (a-b \sin (i c+i d x)^4\right )^3}dx\)

\(\Big \downarrow \) 26

\(\displaystyle -i \int \frac {\sin (i c+i d x)^9}{\left (a-b \sin (i c+i d x)^4\right )^3}dx\)

\(\Big \downarrow \) 3694

\(\displaystyle \frac {\int \frac {\left (1-\cosh ^2(c+d x)\right )^4}{\left (-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)+a-b\right )^3}d\cosh (c+d x)}{d}\)

\(\Big \downarrow \) 1517

\(\displaystyle \frac {\frac {a \cosh (c+d x) \left (a-b \cosh ^2(c+d x)+b\right )}{8 b^2 (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )^2}-\frac {\int \frac {2 \left (8 a (a-b) \cosh ^4(c+d x)-a (11 a-16 b) \cosh ^2(c+d x)+\frac {a \left (a^2+b a-8 b^2\right )}{b}\right )}{\left (-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)+a-b\right )^2}d\cosh (c+d x)}{16 a b (a-b)}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {a \cosh (c+d x) \left (a-b \cosh ^2(c+d x)+b\right )}{8 b^2 (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )^2}-\frac {\int \frac {8 a (a-b) \cosh ^4(c+d x)-a (11 a-16 b) \cosh ^2(c+d x)+a \left (\frac {a^2}{b}+a-8 b\right )}{\left (-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)+a-b\right )^2}d\cosh (c+d x)}{8 a b (a-b)}}{d}\)

\(\Big \downarrow \) 2206

\(\displaystyle \frac {\frac {a \cosh (c+d x) \left (a-b \cosh ^2(c+d x)+b\right )}{8 b^2 (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )^2}-\frac {\frac {a \cosh (c+d x) \left (9 a^2-2 b (2 a-5 b) \cosh ^2(c+d x)-11 a b-10 b^2\right )}{4 b (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}-\frac {\int \frac {2 a^2 \left (5 a^2-15 b a+22 b^2+2 (2 a-5 b) b \cosh ^2(c+d x)\right )}{-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)+a-b}d\cosh (c+d x)}{8 a b (a-b)}}{8 a b (a-b)}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {a \cosh (c+d x) \left (a-b \cosh ^2(c+d x)+b\right )}{8 b^2 (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )^2}-\frac {\frac {a \cosh (c+d x) \left (9 a^2-2 b (2 a-5 b) \cosh ^2(c+d x)-11 a b-10 b^2\right )}{4 b (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}-\frac {a \int \frac {5 a^2-15 b a+22 b^2+2 (2 a-5 b) b \cosh ^2(c+d x)}{-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)+a-b}d\cosh (c+d x)}{4 b (a-b)}}{8 a b (a-b)}}{d}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {\frac {a \cosh (c+d x) \left (a-b \cosh ^2(c+d x)+b\right )}{8 b^2 (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )^2}-\frac {\frac {a \cosh (c+d x) \left (9 a^2-2 b (2 a-5 b) \cosh ^2(c+d x)-11 a b-10 b^2\right )}{4 b (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}-\frac {a \left (\frac {\sqrt {b} \left (-2 \sqrt {a} \sqrt {b}+a+b\right ) \left (14 \sqrt {a} \sqrt {b}+5 a+12 b\right ) \int \frac {1}{\left (\sqrt {a}+\sqrt {b}\right ) \sqrt {b}-b \cosh ^2(c+d x)}d\cosh (c+d x)}{2 \sqrt {a}}-\frac {\sqrt {b} \left (\sqrt {a}+\sqrt {b}\right )^2 \left (-14 \sqrt {a} \sqrt {b}+5 a+12 b\right ) \int \frac {1}{-b \cosh ^2(c+d x)-\left (\sqrt {a}-\sqrt {b}\right ) \sqrt {b}}d\cosh (c+d x)}{2 \sqrt {a}}\right )}{4 b (a-b)}}{8 a b (a-b)}}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {a \cosh (c+d x) \left (a-b \cosh ^2(c+d x)+b\right )}{8 b^2 (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )^2}-\frac {\frac {a \cosh (c+d x) \left (9 a^2-2 b (2 a-5 b) \cosh ^2(c+d x)-11 a b-10 b^2\right )}{4 b (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}-\frac {a \left (\frac {\sqrt {b} \left (-2 \sqrt {a} \sqrt {b}+a+b\right ) \left (14 \sqrt {a} \sqrt {b}+5 a+12 b\right ) \int \frac {1}{\left (\sqrt {a}+\sqrt {b}\right ) \sqrt {b}-b \cosh ^2(c+d x)}d\cosh (c+d x)}{2 \sqrt {a}}+\frac {\left (-14 \sqrt {a} \sqrt {b}+5 a+12 b\right ) \left (\sqrt {a}+\sqrt {b}\right )^2 \arctan \left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 \sqrt {a} \sqrt [4]{b} \sqrt {\sqrt {a}-\sqrt {b}}}\right )}{4 b (a-b)}}{8 a b (a-b)}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {a \cosh (c+d x) \left (a-b \cosh ^2(c+d x)+b\right )}{8 b^2 (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )^2}-\frac {\frac {a \cosh (c+d x) \left (9 a^2-2 b (2 a-5 b) \cosh ^2(c+d x)-11 a b-10 b^2\right )}{4 b (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}-\frac {a \left (\frac {\left (-14 \sqrt {a} \sqrt {b}+5 a+12 b\right ) \left (\sqrt {a}+\sqrt {b}\right )^2 \arctan \left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 \sqrt {a} \sqrt [4]{b} \sqrt {\sqrt {a}-\sqrt {b}}}+\frac {\left (-2 \sqrt {a} \sqrt {b}+a+b\right ) \left (14 \sqrt {a} \sqrt {b}+5 a+12 b\right ) \text {arctanh}\left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{2 \sqrt {a} \sqrt [4]{b} \sqrt {\sqrt {a}+\sqrt {b}}}\right )}{4 b (a-b)}}{8 a b (a-b)}}{d}\)

Input:

Int[Sinh[c + d*x]^9/(a - b*Sinh[c + d*x]^4)^3,x]
 

Output:

((a*Cosh[c + d*x]*(a + b - b*Cosh[c + d*x]^2))/(8*(a - b)*b^2*(a - b + 2*b 
*Cosh[c + d*x]^2 - b*Cosh[c + d*x]^4)^2) - (-1/4*(a*(((Sqrt[a] + Sqrt[b])^ 
2*(5*a - 14*Sqrt[a]*Sqrt[b] + 12*b)*ArcTan[(b^(1/4)*Cosh[c + d*x])/Sqrt[Sq 
rt[a] - Sqrt[b]]])/(2*Sqrt[a]*Sqrt[Sqrt[a] - Sqrt[b]]*b^(1/4)) + ((a - 2*S 
qrt[a]*Sqrt[b] + b)*(5*a + 14*Sqrt[a]*Sqrt[b] + 12*b)*ArcTanh[(b^(1/4)*Cos 
h[c + d*x])/Sqrt[Sqrt[a] + Sqrt[b]]])/(2*Sqrt[a]*Sqrt[Sqrt[a] + Sqrt[b]]*b 
^(1/4))))/((a - b)*b) + (a*Cosh[c + d*x]*(9*a^2 - 11*a*b - 10*b^2 - 2*(2*a 
 - 5*b)*b*Cosh[c + d*x]^2))/(4*(a - b)*b*(a - b + 2*b*Cosh[c + d*x]^2 - b* 
Cosh[c + d*x]^4)))/(8*a*(a - b)*b))/d
 

Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1517
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x 
_Symbol] :> With[{f = Coeff[PolynomialRemainder[(d + e*x^2)^q, a + b*x^2 + 
c*x^4, x], x, 0], g = Coeff[PolynomialRemainder[(d + e*x^2)^q, a + b*x^2 + 
c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^4)^(p + 1)*((a*b*g - f*(b^2 - 2* 
a*c) - c*(b*f - 2*a*g)*x^2)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a* 
(p + 1)*(b^2 - 4*a*c))   Int[(a + b*x^2 + c*x^4)^(p + 1)*ExpandToSum[2*a*(p 
 + 1)*(b^2 - 4*a*c)*PolynomialQuotient[(d + e*x^2)^q, a + b*x^2 + c*x^4, x] 
 + b^2*f*(2*p + 3) - 2*a*c*f*(4*p + 5) - a*b*g + c*(4*p + 7)*(b*f - 2*a*g)* 
x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ 
[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[q, 1] && LtQ[p, -1]
 

rule 2206
Int[(Px_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{d = 
 Coeff[PolynomialRemainder[Px, a + b*x^2 + c*x^4, x], x, 0], e = Coeff[Poly 
nomialRemainder[Px, a + b*x^2 + c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^ 
4)^(p + 1)*((a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)/(2*a*(p + 1)*(b 
^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(a + b*x^2 + c 
*x^4)^(p + 1)*ExpandToSum[2*a*(p + 1)*(b^2 - 4*a*c)*PolynomialQuotient[Px, 
a + b*x^2 + c*x^4, x] + b^2*d*(2*p + 3) - 2*a*c*d*(4*p + 5) - a*b*e + c*(4* 
p + 7)*(b*d - 2*a*e)*x^2, x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Px, x 
^2] && Expon[Px, x^2] > 1 && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3694
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-ff/f 
Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - 2*b*ff^2*x^2 + b*ff^4*x^4)^p, 
 x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 
 1)/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(651\) vs. \(2(263)=526\).

Time = 23.33 (sec) , antiderivative size = 652, normalized size of antiderivative = 2.07

method result size
derivativedivides \(\frac {\frac {\frac {a \left (5 a^{2}-11 a b +12 b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{14}}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}-\frac {a \left (35 a^{2}-85 a b +104 b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}+\frac {\left (105 a^{3}-407 a^{2} b +652 b^{2} a -320 b^{3}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}-\frac {\left (175 a^{3}-865 a^{2} b +1696 b^{2} a -1408 b^{3}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}+\frac {\left (175 a^{3}-849 a^{2} b +756 b^{2} a +320 b^{3}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}-\frac {a \left (105 a^{2}-383 a b +248 b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}+\frac {\left (35 a^{2}-77 a b -12 b^{2}\right ) a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}-\frac {a^{2} \left (5 a -11 b \right )}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}}{\left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} a -4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} a +6 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a -16 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +a \right )^{2}}+\frac {a \left (-\frac {\left (4 \sqrt {a b}\, a -10 \sqrt {a b}\, b +5 a^{2}-11 a b +12 b^{2}\right ) \arctan \left (\frac {-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}+2 a}{4 \sqrt {-a b -\sqrt {a b}\, a}}\right )}{4 a \sqrt {-a b -\sqrt {a b}\, a}}+\frac {\left (-4 \sqrt {a b}\, a +10 \sqrt {a b}\, b +5 a^{2}-11 a b +12 b^{2}\right ) \arctan \left (\frac {2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}-2 a}{4 \sqrt {-a b +\sqrt {a b}\, a}}\right )}{4 a \sqrt {-a b +\sqrt {a b}\, a}}\right )}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}}{d}\) \(652\)
default \(\frac {\frac {\frac {a \left (5 a^{2}-11 a b +12 b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{14}}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}-\frac {a \left (35 a^{2}-85 a b +104 b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}+\frac {\left (105 a^{3}-407 a^{2} b +652 b^{2} a -320 b^{3}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}-\frac {\left (175 a^{3}-865 a^{2} b +1696 b^{2} a -1408 b^{3}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}+\frac {\left (175 a^{3}-849 a^{2} b +756 b^{2} a +320 b^{3}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}-\frac {a \left (105 a^{2}-383 a b +248 b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}+\frac {\left (35 a^{2}-77 a b -12 b^{2}\right ) a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}-\frac {a^{2} \left (5 a -11 b \right )}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}}{\left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} a -4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} a +6 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a -16 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +a \right )^{2}}+\frac {a \left (-\frac {\left (4 \sqrt {a b}\, a -10 \sqrt {a b}\, b +5 a^{2}-11 a b +12 b^{2}\right ) \arctan \left (\frac {-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}+2 a}{4 \sqrt {-a b -\sqrt {a b}\, a}}\right )}{4 a \sqrt {-a b -\sqrt {a b}\, a}}+\frac {\left (-4 \sqrt {a b}\, a +10 \sqrt {a b}\, b +5 a^{2}-11 a b +12 b^{2}\right ) \arctan \left (\frac {2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}-2 a}{4 \sqrt {-a b +\sqrt {a b}\, a}}\right )}{4 a \sqrt {-a b +\sqrt {a b}\, a}}\right )}{16 b^{2} \left (a^{2}-2 a b +b^{2}\right )}}{d}\) \(652\)
risch \(\text {Expression too large to display}\) \(1553\)

Input:

int(sinh(d*x+c)^9/(a-b*sinh(d*x+c)^4)^3,x,method=_RETURNVERBOSE)
 

Output:

1/d*(512*(1/8192*a*(5*a^2-11*a*b+12*b^2)/b^2/(a^2-2*a*b+b^2)*tanh(1/2*d*x+ 
1/2*c)^14-1/8192/b^2*a*(35*a^2-85*a*b+104*b^2)/(a^2-2*a*b+b^2)*tanh(1/2*d* 
x+1/2*c)^12+1/8192/b^2*(105*a^3-407*a^2*b+652*a*b^2-320*b^3)/(a^2-2*a*b+b^ 
2)*tanh(1/2*d*x+1/2*c)^10-1/8192*(175*a^3-865*a^2*b+1696*a*b^2-1408*b^3)/b 
^2/(a^2-2*a*b+b^2)*tanh(1/2*d*x+1/2*c)^8+1/8192*(175*a^3-849*a^2*b+756*a*b 
^2+320*b^3)/b^2/(a^2-2*a*b+b^2)*tanh(1/2*d*x+1/2*c)^6-1/8192*a*(105*a^2-38 
3*a*b+248*b^2)/b^2/(a^2-2*a*b+b^2)*tanh(1/2*d*x+1/2*c)^4+1/8192*(35*a^2-77 
*a*b-12*b^2)*a/b^2/(a^2-2*a*b+b^2)*tanh(1/2*d*x+1/2*c)^2-1/8192*a^2*(5*a-1 
1*b)/b^2/(a^2-2*a*b+b^2))/(tanh(1/2*d*x+1/2*c)^8*a-4*tanh(1/2*d*x+1/2*c)^6 
*a+6*tanh(1/2*d*x+1/2*c)^4*a-16*b*tanh(1/2*d*x+1/2*c)^4-4*tanh(1/2*d*x+1/2 
*c)^2*a+a)^2+1/16/b^2/(a^2-2*a*b+b^2)*a*(-1/4*(4*(a*b)^(1/2)*a-10*(a*b)^(1 
/2)*b+5*a^2-11*a*b+12*b^2)/a/(-a*b-(a*b)^(1/2)*a)^(1/2)*arctan(1/4*(-2*tan 
h(1/2*d*x+1/2*c)^2*a+4*(a*b)^(1/2)+2*a)/(-a*b-(a*b)^(1/2)*a)^(1/2))+1/4*(- 
4*(a*b)^(1/2)*a+10*(a*b)^(1/2)*b+5*a^2-11*a*b+12*b^2)/a/(-a*b+(a*b)^(1/2)* 
a)^(1/2)*arctan(1/4*(2*tanh(1/2*d*x+1/2*c)^2*a+4*(a*b)^(1/2)-2*a)/(-a*b+(a 
*b)^(1/2)*a)^(1/2))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 21541 vs. \(2 (264) = 528\).

Time = 0.62 (sec) , antiderivative size = 21541, normalized size of antiderivative = 68.38 \[ \int \frac {\sinh ^9(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx=\text {Too large to display} \] Input:

integrate(sinh(d*x+c)^9/(a-b*sinh(d*x+c)^4)^3,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sinh ^9(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx=\text {Timed out} \] Input:

integrate(sinh(d*x+c)**9/(a-b*sinh(d*x+c)**4)**3,x)
 

Output:

Timed out
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {\sinh ^9(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx=\int { -\frac {\sinh \left (d x + c\right )^{9}}{{\left (b \sinh \left (d x + c\right )^{4} - a\right )}^{3}} \,d x } \] Input:

integrate(sinh(d*x+c)^9/(a-b*sinh(d*x+c)^4)^3,x, algorithm="maxima")
 

Output:

-1/8*((2*a*b^2*e^(15*c) - 5*b^3*e^(15*c))*e^(15*d*x) - (18*a^2*b*e^(13*c) 
- 20*a*b^2*e^(13*c) - 25*b^3*e^(13*c))*e^(13*d*x) + 3*(18*a^2*b*e^(11*c) - 
 8*a*b^2*e^(11*c) - 15*b^3*e^(11*c))*e^(11*d*x) + (160*a^3*e^(9*c) - 388*a 
^2*b*e^(9*c) + 2*a*b^2*e^(9*c) + 25*b^3*e^(9*c))*e^(9*d*x) + (160*a^3*e^(7 
*c) - 388*a^2*b*e^(7*c) + 2*a*b^2*e^(7*c) + 25*b^3*e^(7*c))*e^(7*d*x) + 3* 
(18*a^2*b*e^(5*c) - 8*a*b^2*e^(5*c) - 15*b^3*e^(5*c))*e^(5*d*x) - (18*a^2* 
b*e^(3*c) - 20*a*b^2*e^(3*c) - 25*b^3*e^(3*c))*e^(3*d*x) + (2*a*b^2*e^c - 
5*b^3*e^c)*e^(d*x))/(a^2*b^4*d - 2*a*b^5*d + b^6*d + (a^2*b^4*d*e^(16*c) - 
 2*a*b^5*d*e^(16*c) + b^6*d*e^(16*c))*e^(16*d*x) - 8*(a^2*b^4*d*e^(14*c) - 
 2*a*b^5*d*e^(14*c) + b^6*d*e^(14*c))*e^(14*d*x) - 4*(8*a^3*b^3*d*e^(12*c) 
 - 23*a^2*b^4*d*e^(12*c) + 22*a*b^5*d*e^(12*c) - 7*b^6*d*e^(12*c))*e^(12*d 
*x) + 8*(16*a^3*b^3*d*e^(10*c) - 39*a^2*b^4*d*e^(10*c) + 30*a*b^5*d*e^(10* 
c) - 7*b^6*d*e^(10*c))*e^(10*d*x) + 2*(128*a^4*b^2*d*e^(8*c) - 352*a^3*b^3 
*d*e^(8*c) + 355*a^2*b^4*d*e^(8*c) - 166*a*b^5*d*e^(8*c) + 35*b^6*d*e^(8*c 
))*e^(8*d*x) + 8*(16*a^3*b^3*d*e^(6*c) - 39*a^2*b^4*d*e^(6*c) + 30*a*b^5*d 
*e^(6*c) - 7*b^6*d*e^(6*c))*e^(6*d*x) - 4*(8*a^3*b^3*d*e^(4*c) - 23*a^2*b^ 
4*d*e^(4*c) + 22*a*b^5*d*e^(4*c) - 7*b^6*d*e^(4*c))*e^(4*d*x) - 8*(a^2*b^4 
*d*e^(2*c) - 2*a*b^5*d*e^(2*c) + b^6*d*e^(2*c))*e^(2*d*x)) - 1/512*integra 
te(64*((2*a*b*e^(7*c) - 5*b^2*e^(7*c))*e^(7*d*x) + (10*a^2*e^(5*c) - 28*a* 
b*e^(5*c) + 39*b^2*e^(5*c))*e^(5*d*x) - (10*a^2*e^(3*c) - 28*a*b*e^(3*c...
 

Giac [F]

\[ \int \frac {\sinh ^9(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx=\int { -\frac {\sinh \left (d x + c\right )^{9}}{{\left (b \sinh \left (d x + c\right )^{4} - a\right )}^{3}} \,d x } \] Input:

integrate(sinh(d*x+c)^9/(a-b*sinh(d*x+c)^4)^3,x, algorithm="giac")
 

Output:

sage0*x
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sinh ^9(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx=\int \frac {{\mathrm {sinh}\left (c+d\,x\right )}^9}{{\left (a-b\,{\mathrm {sinh}\left (c+d\,x\right )}^4\right )}^3} \,d x \] Input:

int(sinh(c + d*x)^9/(a - b*sinh(c + d*x)^4)^3,x)
 

Output:

int(sinh(c + d*x)^9/(a - b*sinh(c + d*x)^4)^3, x)
 

Reduce [F]

\[ \int \frac {\sinh ^9(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx=\text {too large to display} \] Input:

int(sinh(d*x+c)^9/(a-b*sinh(d*x+c)^4)^3,x)
 

Output:

(8*e**c*( - 104509440*e**(22*c + 16*d*x)*int(e**(7*d*x)/(e**(24*c + 24*d*x 
)*b**3 - 12*e**(22*c + 22*d*x)*b**3 - 48*e**(20*c + 20*d*x)*a*b**2 + 66*e* 
*(20*c + 20*d*x)*b**3 + 384*e**(18*c + 18*d*x)*a*b**2 - 220*e**(18*c + 18* 
d*x)*b**3 + 768*e**(16*c + 16*d*x)*a**2*b - 1344*e**(16*c + 16*d*x)*a*b**2 
 + 495*e**(16*c + 16*d*x)*b**3 - 3072*e**(14*c + 14*d*x)*a**2*b + 2688*e** 
(14*c + 14*d*x)*a*b**2 - 792*e**(14*c + 14*d*x)*b**3 - 4096*e**(12*c + 12* 
d*x)*a**3 + 4608*e**(12*c + 12*d*x)*a**2*b - 3360*e**(12*c + 12*d*x)*a*b** 
2 + 924*e**(12*c + 12*d*x)*b**3 - 3072*e**(10*c + 10*d*x)*a**2*b + 2688*e* 
*(10*c + 10*d*x)*a*b**2 - 792*e**(10*c + 10*d*x)*b**3 + 768*e**(8*c + 8*d* 
x)*a**2*b - 1344*e**(8*c + 8*d*x)*a*b**2 + 495*e**(8*c + 8*d*x)*b**3 + 384 
*e**(6*c + 6*d*x)*a*b**2 - 220*e**(6*c + 6*d*x)*b**3 - 48*e**(4*c + 4*d*x) 
*a*b**2 + 66*e**(4*c + 4*d*x)*b**3 - 12*e**(2*c + 2*d*x)*b**3 + b**3),x)*a 
**3*b**3*d - 41349632*e**(22*c + 16*d*x)*int(e**(7*d*x)/(e**(24*c + 24*d*x 
)*b**3 - 12*e**(22*c + 22*d*x)*b**3 - 48*e**(20*c + 20*d*x)*a*b**2 + 66*e* 
*(20*c + 20*d*x)*b**3 + 384*e**(18*c + 18*d*x)*a*b**2 - 220*e**(18*c + 18* 
d*x)*b**3 + 768*e**(16*c + 16*d*x)*a**2*b - 1344*e**(16*c + 16*d*x)*a*b**2 
 + 495*e**(16*c + 16*d*x)*b**3 - 3072*e**(14*c + 14*d*x)*a**2*b + 2688*e** 
(14*c + 14*d*x)*a*b**2 - 792*e**(14*c + 14*d*x)*b**3 - 4096*e**(12*c + 12* 
d*x)*a**3 + 4608*e**(12*c + 12*d*x)*a**2*b - 3360*e**(12*c + 12*d*x)*a*b** 
2 + 924*e**(12*c + 12*d*x)*b**3 - 3072*e**(10*c + 10*d*x)*a**2*b + 2688...