\(\int \frac {\sinh ^4(c+d x)}{(a-b \sinh ^4(c+d x))^3} \, dx\) [236]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 314 \[ \int \frac {\sinh ^4(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx=\frac {3 \left (2 \sqrt {a}-\sqrt {b}\right ) \text {arctanh}\left (\frac {\sqrt {\sqrt {a}-\sqrt {b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{64 a^{7/4} \left (\sqrt {a}-\sqrt {b}\right )^{5/2} \sqrt {b} d}-\frac {3 \left (2 \sqrt {a}+\sqrt {b}\right ) \text {arctanh}\left (\frac {\sqrt {\sqrt {a}+\sqrt {b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{64 a^{7/4} \left (\sqrt {a}+\sqrt {b}\right )^{5/2} \sqrt {b} d}-\frac {b \tanh (c+d x) \left (3 a+b-4 (a+b) \tanh ^2(c+d x)\right )}{8 (a-b)^3 d \left (a-2 a \tanh ^2(c+d x)+(a-b) \tanh ^4(c+d x)\right )^2}-\frac {\tanh (c+d x) \left (\frac {9 a^2-24 a b-b^2}{(a-b)^3}-\frac {(17 a+3 b) \tanh ^2(c+d x)}{(a-b)^2}\right )}{32 a d \left (a-2 a \tanh ^2(c+d x)+(a-b) \tanh ^4(c+d x)\right )} \] Output:

3/64*(2*a^(1/2)-b^(1/2))*arctanh((a^(1/2)-b^(1/2))^(1/2)*tanh(d*x+c)/a^(1/ 
4))/a^(7/4)/(a^(1/2)-b^(1/2))^(5/2)/b^(1/2)/d-3/64*(2*a^(1/2)+b^(1/2))*arc 
tanh((a^(1/2)+b^(1/2))^(1/2)*tanh(d*x+c)/a^(1/4))/a^(7/4)/(a^(1/2)+b^(1/2) 
)^(5/2)/b^(1/2)/d-1/8*b*tanh(d*x+c)*(3*a+b-4*(a+b)*tanh(d*x+c)^2)/(a-b)^3/ 
d/(a-2*a*tanh(d*x+c)^2+(a-b)*tanh(d*x+c)^4)^2-1/32*tanh(d*x+c)*((9*a^2-24* 
a*b-b^2)/(a-b)^3-(17*a+3*b)*tanh(d*x+c)^2/(a-b)^2)/a/d/(a-2*a*tanh(d*x+c)^ 
2+(a-b)*tanh(d*x+c)^4)
 

Mathematica [A] (verified)

Time = 12.97 (sec) , antiderivative size = 316, normalized size of antiderivative = 1.01 \[ \int \frac {\sinh ^4(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx=\frac {-\frac {3 \left (2 a^{3/2}+3 a \sqrt {b}-b^{3/2}\right ) \arctan \left (\frac {\left (\sqrt {a}-\sqrt {b}\right ) \tanh (c+d x)}{\sqrt {-a+\sqrt {a} \sqrt {b}}}\right )}{a^{3/2} \sqrt {-a+\sqrt {a} \sqrt {b}} \sqrt {b}}-\frac {3 \left (2 a^{3/2}-3 a \sqrt {b}+b^{3/2}\right ) \text {arctanh}\left (\frac {\left (\sqrt {a}+\sqrt {b}\right ) \tanh (c+d x)}{\sqrt {a+\sqrt {a} \sqrt {b}}}\right )}{a^{3/2} \sqrt {a+\sqrt {a} \sqrt {b}} \sqrt {b}}+\frac {8 (-7 a-2 b+(2 a+b) \cosh (2 (c+d x))) \sinh (2 (c+d x))}{a (8 a-3 b+4 b \cosh (2 (c+d x))-b \cosh (4 (c+d x)))}+\frac {64 (a-b) (-6 \sinh (2 (c+d x))+\sinh (4 (c+d x)))}{(-8 a+3 b-4 b \cosh (2 (c+d x))+b \cosh (4 (c+d x)))^2}}{64 (a-b)^2 d} \] Input:

Integrate[Sinh[c + d*x]^4/(a - b*Sinh[c + d*x]^4)^3,x]
 

Output:

((-3*(2*a^(3/2) + 3*a*Sqrt[b] - b^(3/2))*ArcTan[((Sqrt[a] - Sqrt[b])*Tanh[ 
c + d*x])/Sqrt[-a + Sqrt[a]*Sqrt[b]]])/(a^(3/2)*Sqrt[-a + Sqrt[a]*Sqrt[b]] 
*Sqrt[b]) - (3*(2*a^(3/2) - 3*a*Sqrt[b] + b^(3/2))*ArcTanh[((Sqrt[a] + Sqr 
t[b])*Tanh[c + d*x])/Sqrt[a + Sqrt[a]*Sqrt[b]]])/(a^(3/2)*Sqrt[a + Sqrt[a] 
*Sqrt[b]]*Sqrt[b]) + (8*(-7*a - 2*b + (2*a + b)*Cosh[2*(c + d*x)])*Sinh[2* 
(c + d*x)])/(a*(8*a - 3*b + 4*b*Cosh[2*(c + d*x)] - b*Cosh[4*(c + d*x)])) 
+ (64*(a - b)*(-6*Sinh[2*(c + d*x)] + Sinh[4*(c + d*x)]))/(-8*a + 3*b - 4* 
b*Cosh[2*(c + d*x)] + b*Cosh[4*(c + d*x)])^2)/(64*(a - b)^2*d)
 

Rubi [A] (verified)

Time = 0.93 (sec) , antiderivative size = 371, normalized size of antiderivative = 1.18, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 3696, 1672, 27, 2206, 27, 1480, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sinh ^4(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (i c+i d x)^4}{\left (a-b \sin (i c+i d x)^4\right )^3}dx\)

\(\Big \downarrow \) 3696

\(\displaystyle \frac {\int \frac {\tanh ^4(c+d x) \left (1-\tanh ^2(c+d x)\right )^3}{\left ((a-b) \tanh ^4(c+d x)-2 a \tanh ^2(c+d x)+a\right )^3}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 1672

\(\displaystyle \frac {-\frac {\int -\frac {2 \left (-\frac {8 a^2 b \tanh ^6(c+d x)}{a-b}+\frac {8 a^2 (a-3 b) b \tanh ^4(c+d x)}{(a-b)^2}+\frac {4 a^2 (3 a-b) b^2 \tanh ^2(c+d x)}{(a-b)^3}+\frac {a^2 b^2 (3 a+b)}{(a-b)^3}\right )}{\left ((a-b) \tanh ^4(c+d x)-2 a \tanh ^2(c+d x)+a\right )^2}d\tanh (c+d x)}{16 a^2 b}-\frac {b \tanh (c+d x) \left (-4 (a+b) \tanh ^2(c+d x)+3 a+b\right )}{8 (a-b)^3 \left ((a-b) \tanh ^4(c+d x)-2 a \tanh ^2(c+d x)+a\right )^2}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {-\frac {8 a^2 b \tanh ^6(c+d x)}{a-b}+\frac {8 a^2 (a-3 b) b \tanh ^4(c+d x)}{(a-b)^2}+\frac {4 a^2 (3 a-b) b^2 \tanh ^2(c+d x)}{(a-b)^3}+\frac {a^2 b^2 (3 a+b)}{(a-b)^3}}{\left ((a-b) \tanh ^4(c+d x)-2 a \tanh ^2(c+d x)+a\right )^2}d\tanh (c+d x)}{8 a^2 b}-\frac {b \tanh (c+d x) \left (-4 (a+b) \tanh ^2(c+d x)+3 a+b\right )}{8 (a-b)^3 \left ((a-b) \tanh ^4(c+d x)-2 a \tanh ^2(c+d x)+a\right )^2}}{d}\)

\(\Big \downarrow \) 2206

\(\displaystyle \frac {\frac {-\frac {\int -\frac {6 a^3 b^2 \left (-\left ((5 a-b) \tanh ^2(c+d x)\right )+3 a-b\right )}{(a-b)^2 \left ((a-b) \tanh ^4(c+d x)-2 a \tanh ^2(c+d x)+a\right )}d\tanh (c+d x)}{8 a^2 b}-\frac {a b \tanh (c+d x) \left (\frac {9 a^2-24 a b-b^2}{(a-b)^3}-\frac {(17 a+3 b) \tanh ^2(c+d x)}{(a-b)^2}\right )}{4 \left ((a-b) \tanh ^4(c+d x)-2 a \tanh ^2(c+d x)+a\right )}}{8 a^2 b}-\frac {b \tanh (c+d x) \left (-4 (a+b) \tanh ^2(c+d x)+3 a+b\right )}{8 (a-b)^3 \left ((a-b) \tanh ^4(c+d x)-2 a \tanh ^2(c+d x)+a\right )^2}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {3 a b \int \frac {-\left ((5 a-b) \tanh ^2(c+d x)\right )+3 a-b}{(a-b) \tanh ^4(c+d x)-2 a \tanh ^2(c+d x)+a}d\tanh (c+d x)}{4 (a-b)^2}-\frac {a b \tanh (c+d x) \left (\frac {9 a^2-24 a b-b^2}{(a-b)^3}-\frac {(17 a+3 b) \tanh ^2(c+d x)}{(a-b)^2}\right )}{4 \left ((a-b) \tanh ^4(c+d x)-2 a \tanh ^2(c+d x)+a\right )}}{8 a^2 b}-\frac {b \tanh (c+d x) \left (-4 (a+b) \tanh ^2(c+d x)+3 a+b\right )}{8 (a-b)^3 \left ((a-b) \tanh ^4(c+d x)-2 a \tanh ^2(c+d x)+a\right )^2}}{d}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {\frac {\frac {3 a b \left (\frac {\left (\sqrt {a}-\sqrt {b}\right )^3 \left (2 \sqrt {a}+\sqrt {b}\right ) \int \frac {1}{(a-b) \tanh ^2(c+d x)-\sqrt {a} \left (\sqrt {a}-\sqrt {b}\right )}d\tanh (c+d x)}{2 \sqrt {a} \sqrt {b}}-\frac {1}{2} \left (\frac {2 a^2+3 a b-b^2}{\sqrt {a} \sqrt {b}}+5 a-b\right ) \int \frac {1}{(a-b) \tanh ^2(c+d x)-\sqrt {a} \left (\sqrt {a}+\sqrt {b}\right )}d\tanh (c+d x)\right )}{4 (a-b)^2}-\frac {a b \tanh (c+d x) \left (\frac {9 a^2-24 a b-b^2}{(a-b)^3}-\frac {(17 a+3 b) \tanh ^2(c+d x)}{(a-b)^2}\right )}{4 \left ((a-b) \tanh ^4(c+d x)-2 a \tanh ^2(c+d x)+a\right )}}{8 a^2 b}-\frac {b \tanh (c+d x) \left (-4 (a+b) \tanh ^2(c+d x)+3 a+b\right )}{8 (a-b)^3 \left ((a-b) \tanh ^4(c+d x)-2 a \tanh ^2(c+d x)+a\right )^2}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {\frac {3 a b \left (\frac {\left (\frac {2 a^2+3 a b-b^2}{\sqrt {a} \sqrt {b}}+5 a-b\right ) \text {arctanh}\left (\frac {\sqrt {\sqrt {a}-\sqrt {b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{2 \sqrt [4]{a} \sqrt {\sqrt {a}-\sqrt {b}} \left (\sqrt {a}+\sqrt {b}\right )}-\frac {\left (\sqrt {a}-\sqrt {b}\right )^2 \left (2 \sqrt {a}+\sqrt {b}\right ) \text {arctanh}\left (\frac {\sqrt {\sqrt {a}+\sqrt {b}} \tanh (c+d x)}{\sqrt [4]{a}}\right )}{2 a^{3/4} \sqrt {b} \sqrt {\sqrt {a}+\sqrt {b}}}\right )}{4 (a-b)^2}-\frac {a b \tanh (c+d x) \left (\frac {9 a^2-24 a b-b^2}{(a-b)^3}-\frac {(17 a+3 b) \tanh ^2(c+d x)}{(a-b)^2}\right )}{4 \left ((a-b) \tanh ^4(c+d x)-2 a \tanh ^2(c+d x)+a\right )}}{8 a^2 b}-\frac {b \tanh (c+d x) \left (-4 (a+b) \tanh ^2(c+d x)+3 a+b\right )}{8 (a-b)^3 \left ((a-b) \tanh ^4(c+d x)-2 a \tanh ^2(c+d x)+a\right )^2}}{d}\)

Input:

Int[Sinh[c + d*x]^4/(a - b*Sinh[c + d*x]^4)^3,x]
 

Output:

(-1/8*(b*Tanh[c + d*x]*(3*a + b - 4*(a + b)*Tanh[c + d*x]^2))/((a - b)^3*( 
a - 2*a*Tanh[c + d*x]^2 + (a - b)*Tanh[c + d*x]^4)^2) + ((3*a*b*(((5*a - b 
 + (2*a^2 + 3*a*b - b^2)/(Sqrt[a]*Sqrt[b]))*ArcTanh[(Sqrt[Sqrt[a] - Sqrt[b 
]]*Tanh[c + d*x])/a^(1/4)])/(2*a^(1/4)*Sqrt[Sqrt[a] - Sqrt[b]]*(Sqrt[a] + 
Sqrt[b])) - ((Sqrt[a] - Sqrt[b])^2*(2*Sqrt[a] + Sqrt[b])*ArcTanh[(Sqrt[Sqr 
t[a] + Sqrt[b]]*Tanh[c + d*x])/a^(1/4)])/(2*a^(3/4)*Sqrt[Sqrt[a] + Sqrt[b] 
]*Sqrt[b])))/(4*(a - b)^2) - (a*b*Tanh[c + d*x]*((9*a^2 - 24*a*b - b^2)/(a 
 - b)^3 - ((17*a + 3*b)*Tanh[c + d*x]^2)/(a - b)^2))/(4*(a - 2*a*Tanh[c + 
d*x]^2 + (a - b)*Tanh[c + d*x]^4)))/(8*a^2*b))/d
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1672
Int[(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^ 
4)^(p_), x_Symbol] :> With[{f = Coeff[PolynomialRemainder[x^m*(d + e*x^2)^q 
, a + b*x^2 + c*x^4, x], x, 0], g = Coeff[PolynomialRemainder[x^m*(d + e*x^ 
2)^q, a + b*x^2 + c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^4)^(p + 1)*((a 
*b*g - f*(b^2 - 2*a*c) - c*(b*f - 2*a*g)*x^2)/(2*a*(p + 1)*(b^2 - 4*a*c))), 
 x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(a + b*x^2 + c*x^4)^(p + 1)* 
Simp[ExpandToSum[2*a*(p + 1)*(b^2 - 4*a*c)*PolynomialQuotient[x^m*(d + e*x^ 
2)^q, a + b*x^2 + c*x^4, x] + b^2*f*(2*p + 3) - 2*a*c*f*(4*p + 5) - a*b*g + 
 c*(4*p + 7)*(b*f - 2*a*g)*x^2, x], x], x], x]] /; FreeQ[{a, b, c, d, e}, x 
] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IGtQ[q, 1] && IGtQ[m/2, 0]
 

rule 2206
Int[(Px_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{d = 
 Coeff[PolynomialRemainder[Px, a + b*x^2 + c*x^4, x], x, 0], e = Coeff[Poly 
nomialRemainder[Px, a + b*x^2 + c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^ 
4)^(p + 1)*((a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)/(2*a*(p + 1)*(b 
^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(a + b*x^2 + c 
*x^4)^(p + 1)*ExpandToSum[2*a*(p + 1)*(b^2 - 4*a*c)*PolynomialQuotient[Px, 
a + b*x^2 + c*x^4, x] + b^2*d*(2*p + 3) - 2*a*c*d*(4*p + 5) - a*b*e + c*(4* 
p + 7)*(b*d - 2*a*e)*x^2, x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Px, x 
^2] && Expon[Px, x^2] > 1 && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3696
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^( 
p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(m + 1 
)/f   Subst[Int[x^m*((a + 2*a*ff^2*x^2 + (a + b)*ff^4*x^4)^p/(1 + ff^2*x^2) 
^(m/2 + 2*p + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] & 
& IntegerQ[m/2] && IntegerQ[p]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 10.18 (sec) , antiderivative size = 523, normalized size of antiderivative = 1.67

method result size
derivativedivides \(\frac {-\frac {32 \left (\frac {3 \left (3 a -b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{512 \left (a^{2}-2 a b +b^{2}\right )}-\frac {\left (77 a -23 b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{512 \left (a^{2}-2 a b +b^{2}\right )}+\frac {\left (177 a^{2}-131 a b -16 b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{512 \left (a^{2}-2 a b +b^{2}\right ) a}-\frac {\left (109 a^{2}-367 a b -144 b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{512 a \left (a^{2}-2 a b +b^{2}\right )}-\frac {\left (109 a^{2}-367 a b -144 b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{512 a \left (a^{2}-2 a b +b^{2}\right )}+\frac {\left (177 a^{2}-131 a b -16 b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{512 \left (a^{2}-2 a b +b^{2}\right ) a}-\frac {\left (77 a -23 b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{13}}{512 \left (a^{2}-2 a b +b^{2}\right )}+\frac {3 \left (3 a -b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{15}}{512 \left (a^{2}-2 a b +b^{2}\right )}\right )}{\left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} a -4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} a +6 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a -16 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +a \right )^{2}}-\frac {3 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a \,\textit {\_Z}^{8}-4 a \,\textit {\_Z}^{6}+\left (6 a -16 b \right ) \textit {\_Z}^{4}-4 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\left (\left (3 a -b \right ) \textit {\_R}^{6}+\left (-17 a +3 b \right ) \textit {\_R}^{4}+\left (17 a -3 b \right ) \textit {\_R}^{2}-3 a +b \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{7} a -3 \textit {\_R}^{5} a +3 \textit {\_R}^{3} a -8 \textit {\_R}^{3} b -\textit {\_R} a}\right )}{128 \left (a^{2}-2 a b +b^{2}\right ) a}}{d}\) \(523\)
default \(\frac {-\frac {32 \left (\frac {3 \left (3 a -b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{512 \left (a^{2}-2 a b +b^{2}\right )}-\frac {\left (77 a -23 b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{512 \left (a^{2}-2 a b +b^{2}\right )}+\frac {\left (177 a^{2}-131 a b -16 b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{512 \left (a^{2}-2 a b +b^{2}\right ) a}-\frac {\left (109 a^{2}-367 a b -144 b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{512 a \left (a^{2}-2 a b +b^{2}\right )}-\frac {\left (109 a^{2}-367 a b -144 b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{512 a \left (a^{2}-2 a b +b^{2}\right )}+\frac {\left (177 a^{2}-131 a b -16 b^{2}\right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{512 \left (a^{2}-2 a b +b^{2}\right ) a}-\frac {\left (77 a -23 b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{13}}{512 \left (a^{2}-2 a b +b^{2}\right )}+\frac {3 \left (3 a -b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{15}}{512 \left (a^{2}-2 a b +b^{2}\right )}\right )}{\left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} a -4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} a +6 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a -16 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +a \right )^{2}}-\frac {3 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a \,\textit {\_Z}^{8}-4 a \,\textit {\_Z}^{6}+\left (6 a -16 b \right ) \textit {\_Z}^{4}-4 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\left (\left (3 a -b \right ) \textit {\_R}^{6}+\left (-17 a +3 b \right ) \textit {\_R}^{4}+\left (17 a -3 b \right ) \textit {\_R}^{2}-3 a +b \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{7} a -3 \textit {\_R}^{5} a +3 \textit {\_R}^{3} a -8 \textit {\_R}^{3} b -\textit {\_R} a}\right )}{128 \left (a^{2}-2 a b +b^{2}\right ) a}}{d}\) \(523\)
risch \(\text {Expression too large to display}\) \(1700\)

Input:

int(sinh(d*x+c)^4/(a-b*sinh(d*x+c)^4)^3,x,method=_RETURNVERBOSE)
 

Output:

1/d*(-32*(3/512*(3*a-b)/(a^2-2*a*b+b^2)*tanh(1/2*d*x+1/2*c)-1/512*(77*a-23 
*b)/(a^2-2*a*b+b^2)*tanh(1/2*d*x+1/2*c)^3+1/512*(177*a^2-131*a*b-16*b^2)/( 
a^2-2*a*b+b^2)/a*tanh(1/2*d*x+1/2*c)^5-1/512*(109*a^2-367*a*b-144*b^2)/a/( 
a^2-2*a*b+b^2)*tanh(1/2*d*x+1/2*c)^7-1/512*(109*a^2-367*a*b-144*b^2)/a/(a^ 
2-2*a*b+b^2)*tanh(1/2*d*x+1/2*c)^9+1/512*(177*a^2-131*a*b-16*b^2)/(a^2-2*a 
*b+b^2)/a*tanh(1/2*d*x+1/2*c)^11-1/512*(77*a-23*b)/(a^2-2*a*b+b^2)*tanh(1/ 
2*d*x+1/2*c)^13+3/512*(3*a-b)/(a^2-2*a*b+b^2)*tanh(1/2*d*x+1/2*c)^15)/(tan 
h(1/2*d*x+1/2*c)^8*a-4*tanh(1/2*d*x+1/2*c)^6*a+6*tanh(1/2*d*x+1/2*c)^4*a-1 
6*b*tanh(1/2*d*x+1/2*c)^4-4*tanh(1/2*d*x+1/2*c)^2*a+a)^2-3/128/(a^2-2*a*b+ 
b^2)/a*sum(((3*a-b)*_R^6+(-17*a+3*b)*_R^4+(17*a-3*b)*_R^2-3*a+b)/(_R^7*a-3 
*_R^5*a+3*_R^3*a-8*_R^3*b-_R*a)*ln(tanh(1/2*d*x+1/2*c)-_R),_R=RootOf(a*_Z^ 
8-4*a*_Z^6+(6*a-16*b)*_Z^4-4*a*_Z^2+a)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 21932 vs. \(2 (264) = 528\).

Time = 0.77 (sec) , antiderivative size = 21932, normalized size of antiderivative = 69.85 \[ \int \frac {\sinh ^4(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx=\text {Too large to display} \] Input:

integrate(sinh(d*x+c)^4/(a-b*sinh(d*x+c)^4)^3,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sinh ^4(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx=\text {Timed out} \] Input:

integrate(sinh(d*x+c)**4/(a-b*sinh(d*x+c)**4)**3,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\sinh ^4(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx=\int { -\frac {\sinh \left (d x + c\right )^{4}}{{\left (b \sinh \left (d x + c\right )^{4} - a\right )}^{3}} \,d x } \] Input:

integrate(sinh(d*x+c)^4/(a-b*sinh(d*x+c)^4)^3,x, algorithm="maxima")
 

Output:

1/8*(3*a*b^2*e^(14*d*x + 14*c) + 2*a*b^2 + b^3 - 3*(10*a*b^2*e^(12*c) - b^ 
3*e^(12*c))*e^(12*d*x) - (80*a^2*b*e^(10*c) - 111*a*b^2*e^(10*c) + 16*b^3* 
e^(10*c))*e^(10*d*x) + (256*a^3*e^(8*c) - 64*a^2*b*e^(8*c) - 26*a*b^2*e^(8 
*c) + 35*b^3*e^(8*c))*e^(8*d*x) + (336*a^2*b*e^(6*c) - 95*a*b^2*e^(6*c) - 
40*b^3*e^(6*c))*e^(6*d*x) - (64*a^2*b*e^(4*c) - 54*a*b^2*e^(4*c) - 25*b^3* 
e^(4*c))*e^(4*d*x) - (19*a*b^2*e^(2*c) + 8*b^3*e^(2*c))*e^(2*d*x))/(a^3*b^ 
3*d - 2*a^2*b^4*d + a*b^5*d + (a^3*b^3*d*e^(16*c) - 2*a^2*b^4*d*e^(16*c) + 
 a*b^5*d*e^(16*c))*e^(16*d*x) - 8*(a^3*b^3*d*e^(14*c) - 2*a^2*b^4*d*e^(14* 
c) + a*b^5*d*e^(14*c))*e^(14*d*x) - 4*(8*a^4*b^2*d*e^(12*c) - 23*a^3*b^3*d 
*e^(12*c) + 22*a^2*b^4*d*e^(12*c) - 7*a*b^5*d*e^(12*c))*e^(12*d*x) + 8*(16 
*a^4*b^2*d*e^(10*c) - 39*a^3*b^3*d*e^(10*c) + 30*a^2*b^4*d*e^(10*c) - 7*a* 
b^5*d*e^(10*c))*e^(10*d*x) + 2*(128*a^5*b*d*e^(8*c) - 352*a^4*b^2*d*e^(8*c 
) + 355*a^3*b^3*d*e^(8*c) - 166*a^2*b^4*d*e^(8*c) + 35*a*b^5*d*e^(8*c))*e^ 
(8*d*x) + 8*(16*a^4*b^2*d*e^(6*c) - 39*a^3*b^3*d*e^(6*c) + 30*a^2*b^4*d*e^ 
(6*c) - 7*a*b^5*d*e^(6*c))*e^(6*d*x) - 4*(8*a^4*b^2*d*e^(4*c) - 23*a^3*b^3 
*d*e^(4*c) + 22*a^2*b^4*d*e^(4*c) - 7*a*b^5*d*e^(4*c))*e^(4*d*x) - 8*(a^3* 
b^3*d*e^(2*c) - 2*a^2*b^4*d*e^(2*c) + a*b^5*d*e^(2*c))*e^(2*d*x)) + 1/16*i 
ntegrate(-12*(2*(4*a*e^(4*c) - b*e^(4*c))*e^(4*d*x) - a*e^(6*d*x + 6*c) - 
a*e^(2*d*x + 2*c))/(a^3*b - 2*a^2*b^2 + a*b^3 + (a^3*b*e^(8*c) - 2*a^2*b^2 
*e^(8*c) + a*b^3*e^(8*c))*e^(8*d*x) - 4*(a^3*b*e^(6*c) - 2*a^2*b^2*e^(6...
 

Giac [F]

\[ \int \frac {\sinh ^4(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx=\int { -\frac {\sinh \left (d x + c\right )^{4}}{{\left (b \sinh \left (d x + c\right )^{4} - a\right )}^{3}} \,d x } \] Input:

integrate(sinh(d*x+c)^4/(a-b*sinh(d*x+c)^4)^3,x, algorithm="giac")
 

Output:

sage0*x
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sinh ^4(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx=\int \frac {{\mathrm {sinh}\left (c+d\,x\right )}^4}{{\left (a-b\,{\mathrm {sinh}\left (c+d\,x\right )}^4\right )}^3} \,d x \] Input:

int(sinh(c + d*x)^4/(a - b*sinh(c + d*x)^4)^3,x)
                                                                                    
                                                                                    
 

Output:

int(sinh(c + d*x)^4/(a - b*sinh(c + d*x)^4)^3, x)
 

Reduce [F]

\[ \int \frac {\sinh ^4(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^3} \, dx=\text {too large to display} \] Input:

int(sinh(d*x+c)^4/(a-b*sinh(d*x+c)^4)^3,x)
 

Output:

(32*( - 3694359069327360*e**(20*c + 16*d*x)*int(e**(4*d*x)/(3440640*e**(24 
*c + 24*d*x)*a**4*b**3 + 2150400*e**(24*c + 24*d*x)*a**3*b**4 + 16128*e**( 
24*c + 24*d*x)*a**2*b**5 - 96*e**(24*c + 24*d*x)*a*b**6 + 35*e**(24*c + 24 
*d*x)*b**7 - 41287680*e**(22*c + 22*d*x)*a**4*b**3 - 25804800*e**(22*c + 2 
2*d*x)*a**3*b**4 - 193536*e**(22*c + 22*d*x)*a**2*b**5 + 1152*e**(22*c + 2 
2*d*x)*a*b**6 - 420*e**(22*c + 22*d*x)*b**7 - 165150720*e**(20*c + 20*d*x) 
*a**5*b**2 + 123863040*e**(20*c + 20*d*x)*a**4*b**3 + 141152256*e**(20*c + 
 20*d*x)*a**3*b**4 + 1069056*e**(20*c + 20*d*x)*a**2*b**5 - 8016*e**(20*c 
+ 20*d*x)*a*b**6 + 2310*e**(20*c + 20*d*x)*b**7 + 1321205760*e**(18*c + 18 
*d*x)*a**5*b**2 + 68812800*e**(18*c + 18*d*x)*a**4*b**3 - 466894848*e**(18 
*c + 18*d*x)*a**3*b**4 - 3585024*e**(18*c + 18*d*x)*a**2*b**5 + 34560*e**( 
18*c + 18*d*x)*a*b**6 - 7700*e**(18*c + 18*d*x)*b**7 + 2642411520*e**(16*c 
 + 16*d*x)*a**6*b - 2972712960*e**(16*c + 16*d*x)*a**5*b**2 - 1174634496*e 
**(16*c + 16*d*x)*a**4*b**3 + 1042698240*e**(16*c + 16*d*x)*a**3*b**4 + 81 
39264*e**(16*c + 16*d*x)*a**2*b**5 - 94560*e**(16*c + 16*d*x)*a*b**6 + 173 
25*e**(16*c + 16*d*x)*b**7 - 10569646080*e**(14*c + 14*d*x)*a**6*b + 26424 
11520*e**(14*c + 14*d*x)*a**5*b**2 + 3005743104*e**(14*c + 14*d*x)*a**4*b* 
*3 - 1659469824*e**(14*c + 14*d*x)*a**3*b**4 - 13138944*e**(14*c + 14*d*x) 
*a**2*b**5 + 170112*e**(14*c + 14*d*x)*a*b**6 - 27720*e**(14*c + 14*d*x)*b 
**7 - 14092861440*e**(12*c + 12*d*x)*a**7 + 7046430720*e**(12*c + 12*d*...