\(\int \frac {\cosh ^6(c+d x)}{a+b \sinh ^2(c+d x)} \, dx\) [281]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 121 \[ \int \frac {\cosh ^6(c+d x)}{a+b \sinh ^2(c+d x)} \, dx=\frac {\left (8 a^2-20 a b+15 b^2\right ) x}{8 b^3}-\frac {(a-b)^{5/2} \text {arctanh}\left (\frac {\sqrt {a-b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} b^3 d}-\frac {(4 a-7 b) \cosh (c+d x) \sinh (c+d x)}{8 b^2 d}+\frac {\cosh ^3(c+d x) \sinh (c+d x)}{4 b d} \] Output:

1/8*(8*a^2-20*a*b+15*b^2)*x/b^3-(a-b)^(5/2)*arctanh((a-b)^(1/2)*tanh(d*x+c 
)/a^(1/2))/a^(1/2)/b^3/d-1/8*(4*a-7*b)*cosh(d*x+c)*sinh(d*x+c)/b^2/d+1/4*c 
osh(d*x+c)^3*sinh(d*x+c)/b/d
 

Mathematica [A] (verified)

Time = 0.41 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.88 \[ \int \frac {\cosh ^6(c+d x)}{a+b \sinh ^2(c+d x)} \, dx=\frac {-32 (a-b)^{5/2} \text {arctanh}\left (\frac {\sqrt {a-b} \tanh (c+d x)}{\sqrt {a}}\right )+\sqrt {a} \left (4 \left (8 a^2-20 a b+15 b^2\right ) (c+d x)-8 (a-2 b) b \sinh (2 (c+d x))+b^2 \sinh (4 (c+d x))\right )}{32 \sqrt {a} b^3 d} \] Input:

Integrate[Cosh[c + d*x]^6/(a + b*Sinh[c + d*x]^2),x]
 

Output:

(-32*(a - b)^(5/2)*ArcTanh[(Sqrt[a - b]*Tanh[c + d*x])/Sqrt[a]] + Sqrt[a]* 
(4*(8*a^2 - 20*a*b + 15*b^2)*(c + d*x) - 8*(a - 2*b)*b*Sinh[2*(c + d*x)] + 
 b^2*Sinh[4*(c + d*x)]))/(32*Sqrt[a]*b^3*d)
 

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.23, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3042, 3670, 316, 25, 402, 25, 397, 219, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cosh ^6(c+d x)}{a+b \sinh ^2(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (i c+i d x)^6}{a-b \sin (i c+i d x)^2}dx\)

\(\Big \downarrow \) 3670

\(\displaystyle \frac {\int \frac {1}{\left (1-\tanh ^2(c+d x)\right )^3 \left (a-(a-b) \tanh ^2(c+d x)\right )}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 316

\(\displaystyle \frac {\frac {\int -\frac {3 (a-b) \tanh ^2(c+d x)+a-4 b}{\left (1-\tanh ^2(c+d x)\right )^2 \left (a-(a-b) \tanh ^2(c+d x)\right )}d\tanh (c+d x)}{4 b}+\frac {\tanh (c+d x)}{4 b \left (1-\tanh ^2(c+d x)\right )^2}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\tanh (c+d x)}{4 b \left (1-\tanh ^2(c+d x)\right )^2}-\frac {\int \frac {3 (a-b) \tanh ^2(c+d x)+a-4 b}{\left (1-\tanh ^2(c+d x)\right )^2 \left (a-(a-b) \tanh ^2(c+d x)\right )}d\tanh (c+d x)}{4 b}}{d}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\tanh (c+d x)}{4 b \left (1-\tanh ^2(c+d x)\right )^2}-\frac {\frac {\int -\frac {4 a^2-9 b a+8 b^2+(4 a-7 b) (a-b) \tanh ^2(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (a-(a-b) \tanh ^2(c+d x)\right )}d\tanh (c+d x)}{2 b}+\frac {(4 a-7 b) \tanh (c+d x)}{2 b \left (1-\tanh ^2(c+d x)\right )}}{4 b}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\tanh (c+d x)}{4 b \left (1-\tanh ^2(c+d x)\right )^2}-\frac {\frac {(4 a-7 b) \tanh (c+d x)}{2 b \left (1-\tanh ^2(c+d x)\right )}-\frac {\int \frac {4 a^2-9 b a+8 b^2+(4 a-7 b) (a-b) \tanh ^2(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (a-(a-b) \tanh ^2(c+d x)\right )}d\tanh (c+d x)}{2 b}}{4 b}}{d}\)

\(\Big \downarrow \) 397

\(\displaystyle \frac {\frac {\tanh (c+d x)}{4 b \left (1-\tanh ^2(c+d x)\right )^2}-\frac {\frac {(4 a-7 b) \tanh (c+d x)}{2 b \left (1-\tanh ^2(c+d x)\right )}-\frac {\frac {\left (8 a^2-20 a b+15 b^2\right ) \int \frac {1}{1-\tanh ^2(c+d x)}d\tanh (c+d x)}{b}-\frac {8 (a-b)^3 \int \frac {1}{a-(a-b) \tanh ^2(c+d x)}d\tanh (c+d x)}{b}}{2 b}}{4 b}}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\tanh (c+d x)}{4 b \left (1-\tanh ^2(c+d x)\right )^2}-\frac {\frac {(4 a-7 b) \tanh (c+d x)}{2 b \left (1-\tanh ^2(c+d x)\right )}-\frac {\frac {\left (8 a^2-20 a b+15 b^2\right ) \text {arctanh}(\tanh (c+d x))}{b}-\frac {8 (a-b)^3 \int \frac {1}{a-(a-b) \tanh ^2(c+d x)}d\tanh (c+d x)}{b}}{2 b}}{4 b}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {\tanh (c+d x)}{4 b \left (1-\tanh ^2(c+d x)\right )^2}-\frac {\frac {(4 a-7 b) \tanh (c+d x)}{2 b \left (1-\tanh ^2(c+d x)\right )}-\frac {\frac {\left (8 a^2-20 a b+15 b^2\right ) \text {arctanh}(\tanh (c+d x))}{b}-\frac {8 (a-b)^{5/2} \text {arctanh}\left (\frac {\sqrt {a-b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} b}}{2 b}}{4 b}}{d}\)

Input:

Int[Cosh[c + d*x]^6/(a + b*Sinh[c + d*x]^2),x]
 

Output:

(Tanh[c + d*x]/(4*b*(1 - Tanh[c + d*x]^2)^2) - (-1/2*(((8*a^2 - 20*a*b + 1 
5*b^2)*ArcTanh[Tanh[c + d*x]])/b - (8*(a - b)^(5/2)*ArcTanh[(Sqrt[a - b]*T 
anh[c + d*x])/Sqrt[a]])/(Sqrt[a]*b))/b + ((4*a - 7*b)*Tanh[c + d*x])/(2*b* 
(1 - Tanh[c + d*x]^2)))/(4*b))/d
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 316
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[1/(2*a*(p + 1)*(b*c - a*d))   Int[(a + b*x^2)^(p + 1)*(c + d*x 
^2)^q*Simp[b*c + 2*(p + 1)*(b*c - a*d) + d*b*(2*(p + q + 2) + 1)*x^2, x], x 
], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  ! 
( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, c, d, 2, 
 p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3670
Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^( 
p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff/f   Su 
bst[Int[(a + (a + b)*ff^2*x^2)^p/(1 + ff^2*x^2)^(m/2 + p + 1), x], x, Tan[e 
 + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(430\) vs. \(2(107)=214\).

Time = 177.88 (sec) , antiderivative size = 431, normalized size of antiderivative = 3.56

method result size
risch \(\frac {x \,a^{2}}{b^{3}}-\frac {5 a x}{2 b^{2}}+\frac {15 x}{8 b}+\frac {{\mathrm e}^{4 d x +4 c}}{64 b d}-\frac {{\mathrm e}^{2 d x +2 c} a}{8 b^{2} d}+\frac {{\mathrm e}^{2 d x +2 c}}{4 b d}+\frac {{\mathrm e}^{-2 d x -2 c} a}{8 b^{2} d}-\frac {{\mathrm e}^{-2 d x -2 c}}{4 b d}-\frac {{\mathrm e}^{-4 d x -4 c}}{64 b d}+\frac {a \sqrt {a \left (a -b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 a +2 \sqrt {a \left (a -b \right )}-b}{b}\right )}{2 d \,b^{3}}-\frac {\sqrt {a \left (a -b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 a +2 \sqrt {a \left (a -b \right )}-b}{b}\right )}{d \,b^{2}}+\frac {\sqrt {a \left (a -b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 a +2 \sqrt {a \left (a -b \right )}-b}{b}\right )}{2 a d b}-\frac {a \sqrt {a \left (a -b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {-2 a +2 \sqrt {a \left (a -b \right )}+b}{b}\right )}{2 d \,b^{3}}+\frac {\sqrt {a \left (a -b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {-2 a +2 \sqrt {a \left (a -b \right )}+b}{b}\right )}{d \,b^{2}}-\frac {\sqrt {a \left (a -b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {-2 a +2 \sqrt {a \left (a -b \right )}+b}{b}\right )}{2 a d b}\) \(431\)
derivativedivides \(\frac {-\frac {1}{4 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}+\frac {1}{2 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {-4 a +11 b}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {-9 b +4 a}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (8 a^{2}-20 a b +15 b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 b^{3}}+\frac {1}{4 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}+\frac {1}{2 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {4 a -11 b}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {-9 b +4 a}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-8 a^{2}+20 a b -15 b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 b^{3}}+\frac {2 a \left (a^{3}-3 a^{2} b +3 b^{2} a -b^{3}\right ) \left (-\frac {\left (\sqrt {-b \left (a -b \right )}-b \right ) \operatorname {arctanh}\left (\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) a}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}+\frac {\left (\sqrt {-b \left (a -b \right )}+b \right ) \arctan \left (\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) a}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}\right )}{b^{3}}}{d}\) \(438\)
default \(\frac {-\frac {1}{4 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}+\frac {1}{2 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {-4 a +11 b}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {-9 b +4 a}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (8 a^{2}-20 a b +15 b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 b^{3}}+\frac {1}{4 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}+\frac {1}{2 b \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {4 a -11 b}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {-9 b +4 a}{8 b^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-8 a^{2}+20 a b -15 b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 b^{3}}+\frac {2 a \left (a^{3}-3 a^{2} b +3 b^{2} a -b^{3}\right ) \left (-\frac {\left (\sqrt {-b \left (a -b \right )}-b \right ) \operatorname {arctanh}\left (\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) a}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}+\frac {\left (\sqrt {-b \left (a -b \right )}+b \right ) \arctan \left (\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) a}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}\right )}{2 a \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}\right )}{b^{3}}}{d}\) \(438\)

Input:

int(cosh(d*x+c)^6/(a+b*sinh(d*x+c)^2),x,method=_RETURNVERBOSE)
 

Output:

x/b^3*a^2-5/2*a*x/b^2+15/8*x/b+1/64/b/d*exp(4*d*x+4*c)-1/8/b^2/d*exp(2*d*x 
+2*c)*a+1/4/b/d*exp(2*d*x+2*c)+1/8/b^2/d*exp(-2*d*x-2*c)*a-1/4/b/d*exp(-2* 
d*x-2*c)-1/64/b/d*exp(-4*d*x-4*c)+1/2*a*(a*(a-b))^(1/2)/d/b^3*ln(exp(2*d*x 
+2*c)+(2*a+2*(a*(a-b))^(1/2)-b)/b)-(a*(a-b))^(1/2)/d/b^2*ln(exp(2*d*x+2*c) 
+(2*a+2*(a*(a-b))^(1/2)-b)/b)+1/2/a*(a*(a-b))^(1/2)/d/b*ln(exp(2*d*x+2*c)+ 
(2*a+2*(a*(a-b))^(1/2)-b)/b)-1/2*a*(a*(a-b))^(1/2)/d/b^3*ln(exp(2*d*x+2*c) 
-(-2*a+2*(a*(a-b))^(1/2)+b)/b)+(a*(a-b))^(1/2)/d/b^2*ln(exp(2*d*x+2*c)-(-2 
*a+2*(a*(a-b))^(1/2)+b)/b)-1/2/a*(a*(a-b))^(1/2)/d/b*ln(exp(2*d*x+2*c)-(-2 
*a+2*(a*(a-b))^(1/2)+b)/b)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 776 vs. \(2 (107) = 214\).

Time = 0.11 (sec) , antiderivative size = 1817, normalized size of antiderivative = 15.02 \[ \int \frac {\cosh ^6(c+d x)}{a+b \sinh ^2(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate(cosh(d*x+c)^6/(a+b*sinh(d*x+c)^2),x, algorithm="fricas")
 

Output:

[1/64*(b^2*cosh(d*x + c)^8 + 8*b^2*cosh(d*x + c)*sinh(d*x + c)^7 + b^2*sin 
h(d*x + c)^8 + 8*(8*a^2 - 20*a*b + 15*b^2)*d*x*cosh(d*x + c)^4 - 8*(a*b - 
2*b^2)*cosh(d*x + c)^6 + 4*(7*b^2*cosh(d*x + c)^2 - 2*a*b + 4*b^2)*sinh(d* 
x + c)^6 + 8*(7*b^2*cosh(d*x + c)^3 - 6*(a*b - 2*b^2)*cosh(d*x + c))*sinh( 
d*x + c)^5 + 2*(35*b^2*cosh(d*x + c)^4 + 4*(8*a^2 - 20*a*b + 15*b^2)*d*x - 
 60*(a*b - 2*b^2)*cosh(d*x + c)^2)*sinh(d*x + c)^4 + 8*(7*b^2*cosh(d*x + c 
)^5 + 4*(8*a^2 - 20*a*b + 15*b^2)*d*x*cosh(d*x + c) - 20*(a*b - 2*b^2)*cos 
h(d*x + c)^3)*sinh(d*x + c)^3 + 8*(a*b - 2*b^2)*cosh(d*x + c)^2 + 4*(7*b^2 
*cosh(d*x + c)^6 + 12*(8*a^2 - 20*a*b + 15*b^2)*d*x*cosh(d*x + c)^2 - 30*( 
a*b - 2*b^2)*cosh(d*x + c)^4 + 2*a*b - 4*b^2)*sinh(d*x + c)^2 + 32*((a^2 - 
 2*a*b + b^2)*cosh(d*x + c)^4 + 4*(a^2 - 2*a*b + b^2)*cosh(d*x + c)^3*sinh 
(d*x + c) + 6*(a^2 - 2*a*b + b^2)*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*(a^2 
 - 2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2 - 2*a*b + b^2)*sinh(d 
*x + c)^4)*sqrt((a - b)/a)*log((b^2*cosh(d*x + c)^4 + 4*b^2*cosh(d*x + c)* 
sinh(d*x + c)^3 + b^2*sinh(d*x + c)^4 + 2*(2*a*b - b^2)*cosh(d*x + c)^2 + 
2*(3*b^2*cosh(d*x + c)^2 + 2*a*b - b^2)*sinh(d*x + c)^2 + 8*a^2 - 8*a*b + 
b^2 + 4*(b^2*cosh(d*x + c)^3 + (2*a*b - b^2)*cosh(d*x + c))*sinh(d*x + c) 
+ 4*(a*b*cosh(d*x + c)^2 + 2*a*b*cosh(d*x + c)*sinh(d*x + c) + a*b*sinh(d* 
x + c)^2 + 2*a^2 - a*b)*sqrt((a - b)/a))/(b*cosh(d*x + c)^4 + 4*b*cosh(d*x 
 + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 + 2*(2*a - b)*cosh(d*x + c)^2...
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cosh ^6(c+d x)}{a+b \sinh ^2(c+d x)} \, dx=\text {Timed out} \] Input:

integrate(cosh(d*x+c)**6/(a+b*sinh(d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\cosh ^6(c+d x)}{a+b \sinh ^2(c+d x)} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(cosh(d*x+c)^6/(a+b*sinh(d*x+c)^2),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(b-a>0)', see `assume?` for more 
details)Is
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 226 vs. \(2 (107) = 214\).

Time = 0.72 (sec) , antiderivative size = 226, normalized size of antiderivative = 1.87 \[ \int \frac {\cosh ^6(c+d x)}{a+b \sinh ^2(c+d x)} \, dx=\frac {\frac {8 \, {\left (8 \, a^{2} - 20 \, a b + 15 \, b^{2}\right )} {\left (d x + c\right )}}{b^{3}} + \frac {b e^{\left (4 \, d x + 4 \, c\right )} - 8 \, a e^{\left (2 \, d x + 2 \, c\right )} + 16 \, b e^{\left (2 \, d x + 2 \, c\right )}}{b^{2}} - \frac {{\left (48 \, a^{2} e^{\left (4 \, d x + 4 \, c\right )} - 120 \, a b e^{\left (4 \, d x + 4 \, c\right )} + 90 \, b^{2} e^{\left (4 \, d x + 4 \, c\right )} - 8 \, a b e^{\left (2 \, d x + 2 \, c\right )} + 16 \, b^{2} e^{\left (2 \, d x + 2 \, c\right )} + b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )}}{b^{3}} - \frac {64 \, {\left (a^{3} - 3 \, a^{2} b + 3 \, a b^{2} - b^{3}\right )} \arctan \left (\frac {b e^{\left (2 \, d x + 2 \, c\right )} + 2 \, a - b}{2 \, \sqrt {-a^{2} + a b}}\right )}{\sqrt {-a^{2} + a b} b^{3}}}{64 \, d} \] Input:

integrate(cosh(d*x+c)^6/(a+b*sinh(d*x+c)^2),x, algorithm="giac")
 

Output:

1/64*(8*(8*a^2 - 20*a*b + 15*b^2)*(d*x + c)/b^3 + (b*e^(4*d*x + 4*c) - 8*a 
*e^(2*d*x + 2*c) + 16*b*e^(2*d*x + 2*c))/b^2 - (48*a^2*e^(4*d*x + 4*c) - 1 
20*a*b*e^(4*d*x + 4*c) + 90*b^2*e^(4*d*x + 4*c) - 8*a*b*e^(2*d*x + 2*c) + 
16*b^2*e^(2*d*x + 2*c) + b^2)*e^(-4*d*x - 4*c)/b^3 - 64*(a^3 - 3*a^2*b + 3 
*a*b^2 - b^3)*arctan(1/2*(b*e^(2*d*x + 2*c) + 2*a - b)/sqrt(-a^2 + a*b))/( 
sqrt(-a^2 + a*b)*b^3))/d
 

Mupad [B] (verification not implemented)

Time = 2.26 (sec) , antiderivative size = 264, normalized size of antiderivative = 2.18 \[ \int \frac {\cosh ^6(c+d x)}{a+b \sinh ^2(c+d x)} \, dx=\frac {x\,\left (8\,a^2-20\,a\,b+15\,b^2\right )}{8\,b^3}-\frac {{\mathrm {e}}^{-4\,c-4\,d\,x}}{64\,b\,d}+\frac {{\mathrm {e}}^{4\,c+4\,d\,x}}{64\,b\,d}+\frac {{\mathrm {e}}^{-2\,c-2\,d\,x}\,\left (a-2\,b\right )}{8\,b^2\,d}-\frac {{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (a-2\,b\right )}{8\,b^2\,d}+\frac {\ln \left (\frac {4\,{\mathrm {e}}^{2\,c+2\,d\,x}\,{\left (a-b\right )}^3}{b^4}-\frac {2\,{\left (a-b\right )}^{5/2}\,\left (b+2\,a\,{\mathrm {e}}^{2\,c+2\,d\,x}-b\,{\mathrm {e}}^{2\,c+2\,d\,x}\right )}{\sqrt {a}\,b^4}\right )\,{\left (a-b\right )}^{5/2}}{2\,\sqrt {a}\,b^3\,d}-\frac {\ln \left (\frac {4\,{\mathrm {e}}^{2\,c+2\,d\,x}\,{\left (a-b\right )}^3}{b^4}+\frac {2\,{\left (a-b\right )}^{5/2}\,\left (b+2\,a\,{\mathrm {e}}^{2\,c+2\,d\,x}-b\,{\mathrm {e}}^{2\,c+2\,d\,x}\right )}{\sqrt {a}\,b^4}\right )\,{\left (a-b\right )}^{5/2}}{2\,\sqrt {a}\,b^3\,d} \] Input:

int(cosh(c + d*x)^6/(a + b*sinh(c + d*x)^2),x)
 

Output:

(x*(8*a^2 - 20*a*b + 15*b^2))/(8*b^3) - exp(- 4*c - 4*d*x)/(64*b*d) + exp( 
4*c + 4*d*x)/(64*b*d) + (exp(- 2*c - 2*d*x)*(a - 2*b))/(8*b^2*d) - (exp(2* 
c + 2*d*x)*(a - 2*b))/(8*b^2*d) + (log((4*exp(2*c + 2*d*x)*(a - b)^3)/b^4 
- (2*(a - b)^(5/2)*(b + 2*a*exp(2*c + 2*d*x) - b*exp(2*c + 2*d*x)))/(a^(1/ 
2)*b^4))*(a - b)^(5/2))/(2*a^(1/2)*b^3*d) - (log((4*exp(2*c + 2*d*x)*(a - 
b)^3)/b^4 + (2*(a - b)^(5/2)*(b + 2*a*exp(2*c + 2*d*x) - b*exp(2*c + 2*d*x 
)))/(a^(1/2)*b^4))*(a - b)^(5/2))/(2*a^(1/2)*b^3*d)
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 630, normalized size of antiderivative = 5.21 \[ \int \frac {\cosh ^6(c+d x)}{a+b \sinh ^2(c+d x)} \, dx=\frac {-32 e^{4 d x +4 c} \sqrt {a}\, \sqrt {a -b}\, \mathrm {log}\left (-\sqrt {2 \sqrt {a}\, \sqrt {a -b}-2 a +b}+e^{d x +c} \sqrt {b}\right ) a^{2}+64 e^{4 d x +4 c} \sqrt {a}\, \sqrt {a -b}\, \mathrm {log}\left (-\sqrt {2 \sqrt {a}\, \sqrt {a -b}-2 a +b}+e^{d x +c} \sqrt {b}\right ) a b -32 e^{4 d x +4 c} \sqrt {a}\, \sqrt {a -b}\, \mathrm {log}\left (-\sqrt {2 \sqrt {a}\, \sqrt {a -b}-2 a +b}+e^{d x +c} \sqrt {b}\right ) b^{2}-32 e^{4 d x +4 c} \sqrt {a}\, \sqrt {a -b}\, \mathrm {log}\left (\sqrt {2 \sqrt {a}\, \sqrt {a -b}-2 a +b}+e^{d x +c} \sqrt {b}\right ) a^{2}+64 e^{4 d x +4 c} \sqrt {a}\, \sqrt {a -b}\, \mathrm {log}\left (\sqrt {2 \sqrt {a}\, \sqrt {a -b}-2 a +b}+e^{d x +c} \sqrt {b}\right ) a b -32 e^{4 d x +4 c} \sqrt {a}\, \sqrt {a -b}\, \mathrm {log}\left (\sqrt {2 \sqrt {a}\, \sqrt {a -b}-2 a +b}+e^{d x +c} \sqrt {b}\right ) b^{2}+32 e^{4 d x +4 c} \sqrt {a}\, \sqrt {a -b}\, \mathrm {log}\left (2 \sqrt {a}\, \sqrt {a -b}+e^{2 d x +2 c} b +2 a -b \right ) a^{2}-64 e^{4 d x +4 c} \sqrt {a}\, \sqrt {a -b}\, \mathrm {log}\left (2 \sqrt {a}\, \sqrt {a -b}+e^{2 d x +2 c} b +2 a -b \right ) a b +32 e^{4 d x +4 c} \sqrt {a}\, \sqrt {a -b}\, \mathrm {log}\left (2 \sqrt {a}\, \sqrt {a -b}+e^{2 d x +2 c} b +2 a -b \right ) b^{2}+e^{8 d x +8 c} a \,b^{2}-8 e^{6 d x +6 c} a^{2} b +16 e^{6 d x +6 c} a \,b^{2}+64 e^{4 d x +4 c} a^{3} d x -160 e^{4 d x +4 c} a^{2} b d x +120 e^{4 d x +4 c} a \,b^{2} d x +8 e^{2 d x +2 c} a^{2} b -16 e^{2 d x +2 c} a \,b^{2}-a \,b^{2}}{64 e^{4 d x +4 c} a \,b^{3} d} \] Input:

int(cosh(d*x+c)^6/(a+b*sinh(d*x+c)^2),x)
 

Output:

( - 32*e**(4*c + 4*d*x)*sqrt(a)*sqrt(a - b)*log( - sqrt(2*sqrt(a)*sqrt(a - 
 b) - 2*a + b) + e**(c + d*x)*sqrt(b))*a**2 + 64*e**(4*c + 4*d*x)*sqrt(a)* 
sqrt(a - b)*log( - sqrt(2*sqrt(a)*sqrt(a - b) - 2*a + b) + e**(c + d*x)*sq 
rt(b))*a*b - 32*e**(4*c + 4*d*x)*sqrt(a)*sqrt(a - b)*log( - sqrt(2*sqrt(a) 
*sqrt(a - b) - 2*a + b) + e**(c + d*x)*sqrt(b))*b**2 - 32*e**(4*c + 4*d*x) 
*sqrt(a)*sqrt(a - b)*log(sqrt(2*sqrt(a)*sqrt(a - b) - 2*a + b) + e**(c + d 
*x)*sqrt(b))*a**2 + 64*e**(4*c + 4*d*x)*sqrt(a)*sqrt(a - b)*log(sqrt(2*sqr 
t(a)*sqrt(a - b) - 2*a + b) + e**(c + d*x)*sqrt(b))*a*b - 32*e**(4*c + 4*d 
*x)*sqrt(a)*sqrt(a - b)*log(sqrt(2*sqrt(a)*sqrt(a - b) - 2*a + b) + e**(c 
+ d*x)*sqrt(b))*b**2 + 32*e**(4*c + 4*d*x)*sqrt(a)*sqrt(a - b)*log(2*sqrt( 
a)*sqrt(a - b) + e**(2*c + 2*d*x)*b + 2*a - b)*a**2 - 64*e**(4*c + 4*d*x)* 
sqrt(a)*sqrt(a - b)*log(2*sqrt(a)*sqrt(a - b) + e**(2*c + 2*d*x)*b + 2*a - 
 b)*a*b + 32*e**(4*c + 4*d*x)*sqrt(a)*sqrt(a - b)*log(2*sqrt(a)*sqrt(a - b 
) + e**(2*c + 2*d*x)*b + 2*a - b)*b**2 + e**(8*c + 8*d*x)*a*b**2 - 8*e**(6 
*c + 6*d*x)*a**2*b + 16*e**(6*c + 6*d*x)*a*b**2 + 64*e**(4*c + 4*d*x)*a**3 
*d*x - 160*e**(4*c + 4*d*x)*a**2*b*d*x + 120*e**(4*c + 4*d*x)*a*b**2*d*x + 
 8*e**(2*c + 2*d*x)*a**2*b - 16*e**(2*c + 2*d*x)*a*b**2 - a*b**2)/(64*e**( 
4*c + 4*d*x)*a*b**3*d)