\(\int \frac {\cosh (a+b x)}{(c+d x)^{3/2}} \, dx\) [45]

Optimal result
Mathematica [A] (verified)
Rubi [C] (verified)
Maple [F]
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 119 \[ \int \frac {\cosh (a+b x)}{(c+d x)^{3/2}} \, dx=-\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}-\frac {\sqrt {b} e^{-a+\frac {b c}{d}} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{d^{3/2}}+\frac {\sqrt {b} e^{a-\frac {b c}{d}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{d^{3/2}} \] Output:

-2*cosh(b*x+a)/d/(d*x+c)^(1/2)-b^(1/2)*exp(-a+b*c/d)*Pi^(1/2)*erf(b^(1/2)* 
(d*x+c)^(1/2)/d^(1/2))/d^(3/2)+b^(1/2)*exp(a-b*c/d)*Pi^(1/2)*erfi(b^(1/2)* 
(d*x+c)^(1/2)/d^(1/2))/d^(3/2)
 

Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.99 \[ \int \frac {\cosh (a+b x)}{(c+d x)^{3/2}} \, dx=\frac {e^{-a} \left (-e^{-b x} \left (1+e^{2 (a+b x)}\right )+e^{\frac {b c}{d}} \sqrt {\frac {b (c+d x)}{d}} \Gamma \left (\frac {1}{2},b \left (\frac {c}{d}+x\right )\right )+e^{2 a-\frac {b c}{d}} \sqrt {-\frac {b (c+d x)}{d}} \Gamma \left (\frac {1}{2},-\frac {b (c+d x)}{d}\right )\right )}{d \sqrt {c+d x}} \] Input:

Integrate[Cosh[a + b*x]/(c + d*x)^(3/2),x]
 

Output:

(-((1 + E^(2*(a + b*x)))/E^(b*x)) + E^((b*c)/d)*Sqrt[(b*(c + d*x))/d]*Gamm 
a[1/2, b*(c/d + x)] + E^(2*a - (b*c)/d)*Sqrt[-((b*(c + d*x))/d)]*Gamma[1/2 
, -((b*(c + d*x))/d)])/(d*E^a*Sqrt[c + d*x])
 

Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.51 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.15, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.562, Rules used = {3042, 3778, 26, 3042, 26, 3789, 2611, 2633, 2634}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cosh (a+b x)}{(c+d x)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (i a+i b x+\frac {\pi }{2}\right )}{(c+d x)^{3/2}}dx\)

\(\Big \downarrow \) 3778

\(\displaystyle -\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}+\frac {2 i b \int -\frac {i \sinh (a+b x)}{\sqrt {c+d x}}dx}{d}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {2 b \int \frac {\sinh (a+b x)}{\sqrt {c+d x}}dx}{d}-\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}+\frac {2 b \int -\frac {i \sin (i a+i b x)}{\sqrt {c+d x}}dx}{d}\)

\(\Big \downarrow \) 26

\(\displaystyle -\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}-\frac {2 i b \int \frac {\sin (i a+i b x)}{\sqrt {c+d x}}dx}{d}\)

\(\Big \downarrow \) 3789

\(\displaystyle -\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}-\frac {2 i b \left (\frac {1}{2} i \int \frac {e^{a+b x}}{\sqrt {c+d x}}dx-\frac {1}{2} i \int \frac {e^{-a-b x}}{\sqrt {c+d x}}dx\right )}{d}\)

\(\Big \downarrow \) 2611

\(\displaystyle -\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}-\frac {2 i b \left (\frac {i \int e^{a+\frac {b (c+d x)}{d}-\frac {b c}{d}}d\sqrt {c+d x}}{d}-\frac {i \int e^{-a-\frac {b (c+d x)}{d}+\frac {b c}{d}}d\sqrt {c+d x}}{d}\right )}{d}\)

\(\Big \downarrow \) 2633

\(\displaystyle -\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}-\frac {2 i b \left (\frac {i \sqrt {\pi } e^{a-\frac {b c}{d}} \text {erfi}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}-\frac {i \int e^{-a-\frac {b (c+d x)}{d}+\frac {b c}{d}}d\sqrt {c+d x}}{d}\right )}{d}\)

\(\Big \downarrow \) 2634

\(\displaystyle -\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}-\frac {2 i b \left (\frac {i \sqrt {\pi } e^{a-\frac {b c}{d}} \text {erfi}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}-\frac {i \sqrt {\pi } e^{\frac {b c}{d}-a} \text {erf}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}\right )}{d}\)

Input:

Int[Cosh[a + b*x]/(c + d*x)^(3/2),x]
 

Output:

(-2*Cosh[a + b*x])/(d*Sqrt[c + d*x]) - ((2*I)*b*(((-1/2*I)*E^(-a + (b*c)/d 
)*Sqrt[Pi]*Erf[(Sqrt[b]*Sqrt[c + d*x])/Sqrt[d]])/(Sqrt[b]*Sqrt[d]) + ((I/2 
)*E^(a - (b*c)/d)*Sqrt[Pi]*Erfi[(Sqrt[b]*Sqrt[c + d*x])/Sqrt[d]])/(Sqrt[b] 
*Sqrt[d])))/d
 

Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 2611
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] : 
> Simp[2/d   Subst[Int[F^(g*(e - c*(f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d 
*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]
 

rule 2633
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt 
[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{ 
F, a, b, c, d}, x] && PosQ[b]
 

rule 2634
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt 
[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F], 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; Fr 
eeQ[{F, a, b, c, d}, x] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3778
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(c 
 + d*x)^(m + 1)*(Sin[e + f*x]/(d*(m + 1))), x] - Simp[f/(d*(m + 1))   Int[( 
c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[m, - 
1]
 

rule 3789
Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[I 
/2   Int[(c + d*x)^m/E^(I*(e + f*x)), x], x] - Simp[I/2   Int[(c + d*x)^m*E 
^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]
 
Maple [F]

\[\int \frac {\cosh \left (b x +a \right )}{\left (d x +c \right )^{\frac {3}{2}}}d x\]

Input:

int(cosh(b*x+a)/(d*x+c)^(3/2),x)
 

Output:

int(cosh(b*x+a)/(d*x+c)^(3/2),x)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 338 vs. \(2 (91) = 182\).

Time = 0.12 (sec) , antiderivative size = 338, normalized size of antiderivative = 2.84 \[ \int \frac {\cosh (a+b x)}{(c+d x)^{3/2}} \, dx=-\frac {\sqrt {\pi } {\left ({\left (d x + c\right )} \cosh \left (b x + a\right ) \cosh \left (-\frac {b c - a d}{d}\right ) - {\left (d x + c\right )} \cosh \left (b x + a\right ) \sinh \left (-\frac {b c - a d}{d}\right ) + {\left ({\left (d x + c\right )} \cosh \left (-\frac {b c - a d}{d}\right ) - {\left (d x + c\right )} \sinh \left (-\frac {b c - a d}{d}\right )\right )} \sinh \left (b x + a\right )\right )} \sqrt {\frac {b}{d}} \operatorname {erf}\left (\sqrt {d x + c} \sqrt {\frac {b}{d}}\right ) + \sqrt {\pi } {\left ({\left (d x + c\right )} \cosh \left (b x + a\right ) \cosh \left (-\frac {b c - a d}{d}\right ) + {\left (d x + c\right )} \cosh \left (b x + a\right ) \sinh \left (-\frac {b c - a d}{d}\right ) + {\left ({\left (d x + c\right )} \cosh \left (-\frac {b c - a d}{d}\right ) + {\left (d x + c\right )} \sinh \left (-\frac {b c - a d}{d}\right )\right )} \sinh \left (b x + a\right )\right )} \sqrt {-\frac {b}{d}} \operatorname {erf}\left (\sqrt {d x + c} \sqrt {-\frac {b}{d}}\right ) + \sqrt {d x + c} {\left (\cosh \left (b x + a\right )^{2} + 2 \, \cosh \left (b x + a\right ) \sinh \left (b x + a\right ) + \sinh \left (b x + a\right )^{2} + 1\right )}}{{\left (d^{2} x + c d\right )} \cosh \left (b x + a\right ) + {\left (d^{2} x + c d\right )} \sinh \left (b x + a\right )} \] Input:

integrate(cosh(b*x+a)/(d*x+c)^(3/2),x, algorithm="fricas")
 

Output:

-(sqrt(pi)*((d*x + c)*cosh(b*x + a)*cosh(-(b*c - a*d)/d) - (d*x + c)*cosh( 
b*x + a)*sinh(-(b*c - a*d)/d) + ((d*x + c)*cosh(-(b*c - a*d)/d) - (d*x + c 
)*sinh(-(b*c - a*d)/d))*sinh(b*x + a))*sqrt(b/d)*erf(sqrt(d*x + c)*sqrt(b/ 
d)) + sqrt(pi)*((d*x + c)*cosh(b*x + a)*cosh(-(b*c - a*d)/d) + (d*x + c)*c 
osh(b*x + a)*sinh(-(b*c - a*d)/d) + ((d*x + c)*cosh(-(b*c - a*d)/d) + (d*x 
 + c)*sinh(-(b*c - a*d)/d))*sinh(b*x + a))*sqrt(-b/d)*erf(sqrt(d*x + c)*sq 
rt(-b/d)) + sqrt(d*x + c)*(cosh(b*x + a)^2 + 2*cosh(b*x + a)*sinh(b*x + a) 
 + sinh(b*x + a)^2 + 1))/((d^2*x + c*d)*cosh(b*x + a) + (d^2*x + c*d)*sinh 
(b*x + a))
 

Sympy [F]

\[ \int \frac {\cosh (a+b x)}{(c+d x)^{3/2}} \, dx=\int \frac {\cosh {\left (a + b x \right )}}{\left (c + d x\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(cosh(b*x+a)/(d*x+c)**(3/2),x)
 

Output:

Integral(cosh(a + b*x)/(c + d*x)**(3/2), x)
 

Maxima [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.87 \[ \int \frac {\cosh (a+b x)}{(c+d x)^{3/2}} \, dx=\frac {\frac {{\left (\frac {\sqrt {\pi } \operatorname {erf}\left (\sqrt {d x + c} \sqrt {-\frac {b}{d}}\right ) e^{\left (a - \frac {b c}{d}\right )}}{\sqrt {-\frac {b}{d}}} - \frac {\sqrt {\pi } \operatorname {erf}\left (\sqrt {d x + c} \sqrt {\frac {b}{d}}\right ) e^{\left (-a + \frac {b c}{d}\right )}}{\sqrt {\frac {b}{d}}}\right )} b}{d} - \frac {2 \, \cosh \left (b x + a\right )}{\sqrt {d x + c}}}{d} \] Input:

integrate(cosh(b*x+a)/(d*x+c)^(3/2),x, algorithm="maxima")
 

Output:

((sqrt(pi)*erf(sqrt(d*x + c)*sqrt(-b/d))*e^(a - b*c/d)/sqrt(-b/d) - sqrt(p 
i)*erf(sqrt(d*x + c)*sqrt(b/d))*e^(-a + b*c/d)/sqrt(b/d))*b/d - 2*cosh(b*x 
 + a)/sqrt(d*x + c))/d
 

Giac [F]

\[ \int \frac {\cosh (a+b x)}{(c+d x)^{3/2}} \, dx=\int { \frac {\cosh \left (b x + a\right )}{{\left (d x + c\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(cosh(b*x+a)/(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

integrate(cosh(b*x + a)/(d*x + c)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cosh (a+b x)}{(c+d x)^{3/2}} \, dx=\int \frac {\mathrm {cosh}\left (a+b\,x\right )}{{\left (c+d\,x\right )}^{3/2}} \,d x \] Input:

int(cosh(a + b*x)/(c + d*x)^(3/2),x)
 

Output:

int(cosh(a + b*x)/(c + d*x)^(3/2), x)
 

Reduce [F]

\[ \int \frac {\cosh (a+b x)}{(c+d x)^{3/2}} \, dx=\int \frac {\cosh \left (b x +a \right )}{\sqrt {d x +c}\, c +\sqrt {d x +c}\, d x}d x \] Input:

int(cosh(b*x+a)/(d*x+c)^(3/2),x)
 

Output:

int(cosh(a + b*x)/(sqrt(c + d*x)*c + sqrt(c + d*x)*d*x),x)