\(\int \frac {\cosh (a+b x)}{(c+d x)^{7/2}} \, dx\) [47]

Optimal result
Mathematica [A] (verified)
Rubi [C] (verified)
Maple [F]
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 174 \[ \int \frac {\cosh (a+b x)}{(c+d x)^{7/2}} \, dx=-\frac {2 \cosh (a+b x)}{5 d (c+d x)^{5/2}}-\frac {8 b^2 \cosh (a+b x)}{15 d^3 \sqrt {c+d x}}-\frac {4 b^{5/2} e^{-a+\frac {b c}{d}} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{15 d^{7/2}}+\frac {4 b^{5/2} e^{a-\frac {b c}{d}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{15 d^{7/2}}-\frac {4 b \sinh (a+b x)}{15 d^2 (c+d x)^{3/2}} \] Output:

-2/5*cosh(b*x+a)/d/(d*x+c)^(5/2)-8/15*b^2*cosh(b*x+a)/d^3/(d*x+c)^(1/2)-4/ 
15*b^(5/2)*exp(-a+b*c/d)*Pi^(1/2)*erf(b^(1/2)*(d*x+c)^(1/2)/d^(1/2))/d^(7/ 
2)+4/15*b^(5/2)*exp(a-b*c/d)*Pi^(1/2)*erfi(b^(1/2)*(d*x+c)^(1/2)/d^(1/2))/ 
d^(7/2)-4/15*b*sinh(b*x+a)/d^2/(d*x+c)^(3/2)
 

Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.10 \[ \int \frac {\cosh (a+b x)}{(c+d x)^{7/2}} \, dx=\frac {e^{-a} \left (2 e^{2 a} \left (-3 d^2 e^{b x}-2 b e^{-\frac {b c}{d}} (c+d x) \left (e^{b \left (\frac {c}{d}+x\right )} (d+2 b (c+d x))+2 d \left (-\frac {b (c+d x)}{d}\right )^{3/2} \Gamma \left (\frac {1}{2},-\frac {b (c+d x)}{d}\right )\right )\right )+e^{-b x} \left (-6 d^2+4 b d (c+d x)-8 b^2 (c+d x)^2+8 d^2 e^{b \left (\frac {c}{d}+x\right )} \left (\frac {b (c+d x)}{d}\right )^{5/2} \Gamma \left (\frac {1}{2},\frac {b (c+d x)}{d}\right )\right )\right )}{30 d^3 (c+d x)^{5/2}} \] Input:

Integrate[Cosh[a + b*x]/(c + d*x)^(7/2),x]
 

Output:

(2*E^(2*a)*(-3*d^2*E^(b*x) - (2*b*(c + d*x)*(E^(b*(c/d + x))*(d + 2*b*(c + 
 d*x)) + 2*d*(-((b*(c + d*x))/d))^(3/2)*Gamma[1/2, -((b*(c + d*x))/d)]))/E 
^((b*c)/d)) + (-6*d^2 + 4*b*d*(c + d*x) - 8*b^2*(c + d*x)^2 + 8*d^2*E^(b*( 
c/d + x))*((b*(c + d*x))/d)^(5/2)*Gamma[1/2, (b*(c + d*x))/d])/E^(b*x))/(3 
0*d^3*E^a*(c + d*x)^(5/2))
 

Rubi [C] (verified)

Result contains complex when optimal does not.

Time = 0.79 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.18, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.938, Rules used = {3042, 3778, 26, 3042, 26, 3778, 3042, 3778, 26, 3042, 26, 3789, 2611, 2633, 2634}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cosh (a+b x)}{(c+d x)^{7/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (i a+i b x+\frac {\pi }{2}\right )}{(c+d x)^{7/2}}dx\)

\(\Big \downarrow \) 3778

\(\displaystyle -\frac {2 \cosh (a+b x)}{5 d (c+d x)^{5/2}}+\frac {2 i b \int -\frac {i \sinh (a+b x)}{(c+d x)^{5/2}}dx}{5 d}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {2 b \int \frac {\sinh (a+b x)}{(c+d x)^{5/2}}dx}{5 d}-\frac {2 \cosh (a+b x)}{5 d (c+d x)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 \cosh (a+b x)}{5 d (c+d x)^{5/2}}+\frac {2 b \int -\frac {i \sin (i a+i b x)}{(c+d x)^{5/2}}dx}{5 d}\)

\(\Big \downarrow \) 26

\(\displaystyle -\frac {2 \cosh (a+b x)}{5 d (c+d x)^{5/2}}-\frac {2 i b \int \frac {\sin (i a+i b x)}{(c+d x)^{5/2}}dx}{5 d}\)

\(\Big \downarrow \) 3778

\(\displaystyle -\frac {2 \cosh (a+b x)}{5 d (c+d x)^{5/2}}-\frac {2 i b \left (\frac {2 i b \int \frac {\cosh (a+b x)}{(c+d x)^{3/2}}dx}{3 d}-\frac {2 i \sinh (a+b x)}{3 d (c+d x)^{3/2}}\right )}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 \cosh (a+b x)}{5 d (c+d x)^{5/2}}-\frac {2 i b \left (\frac {2 i b \int \frac {\sin \left (i a+i b x+\frac {\pi }{2}\right )}{(c+d x)^{3/2}}dx}{3 d}-\frac {2 i \sinh (a+b x)}{3 d (c+d x)^{3/2}}\right )}{5 d}\)

\(\Big \downarrow \) 3778

\(\displaystyle -\frac {2 \cosh (a+b x)}{5 d (c+d x)^{5/2}}-\frac {2 i b \left (\frac {2 i b \left (-\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}+\frac {2 i b \int -\frac {i \sinh (a+b x)}{\sqrt {c+d x}}dx}{d}\right )}{3 d}-\frac {2 i \sinh (a+b x)}{3 d (c+d x)^{3/2}}\right )}{5 d}\)

\(\Big \downarrow \) 26

\(\displaystyle -\frac {2 \cosh (a+b x)}{5 d (c+d x)^{5/2}}-\frac {2 i b \left (\frac {2 i b \left (\frac {2 b \int \frac {\sinh (a+b x)}{\sqrt {c+d x}}dx}{d}-\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}\right )}{3 d}-\frac {2 i \sinh (a+b x)}{3 d (c+d x)^{3/2}}\right )}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 \cosh (a+b x)}{5 d (c+d x)^{5/2}}-\frac {2 i b \left (\frac {2 i b \left (-\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}+\frac {2 b \int -\frac {i \sin (i a+i b x)}{\sqrt {c+d x}}dx}{d}\right )}{3 d}-\frac {2 i \sinh (a+b x)}{3 d (c+d x)^{3/2}}\right )}{5 d}\)

\(\Big \downarrow \) 26

\(\displaystyle -\frac {2 \cosh (a+b x)}{5 d (c+d x)^{5/2}}-\frac {2 i b \left (\frac {2 i b \left (-\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}-\frac {2 i b \int \frac {\sin (i a+i b x)}{\sqrt {c+d x}}dx}{d}\right )}{3 d}-\frac {2 i \sinh (a+b x)}{3 d (c+d x)^{3/2}}\right )}{5 d}\)

\(\Big \downarrow \) 3789

\(\displaystyle -\frac {2 \cosh (a+b x)}{5 d (c+d x)^{5/2}}-\frac {2 i b \left (\frac {2 i b \left (-\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}-\frac {2 i b \left (\frac {1}{2} i \int \frac {e^{a+b x}}{\sqrt {c+d x}}dx-\frac {1}{2} i \int \frac {e^{-a-b x}}{\sqrt {c+d x}}dx\right )}{d}\right )}{3 d}-\frac {2 i \sinh (a+b x)}{3 d (c+d x)^{3/2}}\right )}{5 d}\)

\(\Big \downarrow \) 2611

\(\displaystyle -\frac {2 \cosh (a+b x)}{5 d (c+d x)^{5/2}}-\frac {2 i b \left (\frac {2 i b \left (-\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}-\frac {2 i b \left (\frac {i \int e^{a+\frac {b (c+d x)}{d}-\frac {b c}{d}}d\sqrt {c+d x}}{d}-\frac {i \int e^{-a-\frac {b (c+d x)}{d}+\frac {b c}{d}}d\sqrt {c+d x}}{d}\right )}{d}\right )}{3 d}-\frac {2 i \sinh (a+b x)}{3 d (c+d x)^{3/2}}\right )}{5 d}\)

\(\Big \downarrow \) 2633

\(\displaystyle -\frac {2 \cosh (a+b x)}{5 d (c+d x)^{5/2}}-\frac {2 i b \left (\frac {2 i b \left (-\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}-\frac {2 i b \left (\frac {i \sqrt {\pi } e^{a-\frac {b c}{d}} \text {erfi}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}-\frac {i \int e^{-a-\frac {b (c+d x)}{d}+\frac {b c}{d}}d\sqrt {c+d x}}{d}\right )}{d}\right )}{3 d}-\frac {2 i \sinh (a+b x)}{3 d (c+d x)^{3/2}}\right )}{5 d}\)

\(\Big \downarrow \) 2634

\(\displaystyle -\frac {2 \cosh (a+b x)}{5 d (c+d x)^{5/2}}-\frac {2 i b \left (\frac {2 i b \left (-\frac {2 \cosh (a+b x)}{d \sqrt {c+d x}}-\frac {2 i b \left (\frac {i \sqrt {\pi } e^{a-\frac {b c}{d}} \text {erfi}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}-\frac {i \sqrt {\pi } e^{\frac {b c}{d}-a} \text {erf}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}\right )}{d}\right )}{3 d}-\frac {2 i \sinh (a+b x)}{3 d (c+d x)^{3/2}}\right )}{5 d}\)

Input:

Int[Cosh[a + b*x]/(c + d*x)^(7/2),x]
 

Output:

(-2*Cosh[a + b*x])/(5*d*(c + d*x)^(5/2)) - (((2*I)/5)*b*((((2*I)/3)*b*((-2 
*Cosh[a + b*x])/(d*Sqrt[c + d*x]) - ((2*I)*b*(((-1/2*I)*E^(-a + (b*c)/d)*S 
qrt[Pi]*Erf[(Sqrt[b]*Sqrt[c + d*x])/Sqrt[d]])/(Sqrt[b]*Sqrt[d]) + ((I/2)*E 
^(a - (b*c)/d)*Sqrt[Pi]*Erfi[(Sqrt[b]*Sqrt[c + d*x])/Sqrt[d]])/(Sqrt[b]*Sq 
rt[d])))/d))/d - (((2*I)/3)*Sinh[a + b*x])/(d*(c + d*x)^(3/2))))/d
 

Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 2611
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] : 
> Simp[2/d   Subst[Int[F^(g*(e - c*(f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d 
*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]
 

rule 2633
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt 
[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{ 
F, a, b, c, d}, x] && PosQ[b]
 

rule 2634
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt 
[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F], 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; Fr 
eeQ[{F, a, b, c, d}, x] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3778
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(c 
 + d*x)^(m + 1)*(Sin[e + f*x]/(d*(m + 1))), x] - Simp[f/(d*(m + 1))   Int[( 
c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[m, - 
1]
 

rule 3789
Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[I 
/2   Int[(c + d*x)^m/E^(I*(e + f*x)), x], x] - Simp[I/2   Int[(c + d*x)^m*E 
^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]
 
Maple [F]

\[\int \frac {\cosh \left (b x +a \right )}{\left (d x +c \right )^{\frac {7}{2}}}d x\]

Input:

int(cosh(b*x+a)/(d*x+c)^(7/2),x)
 

Output:

int(cosh(b*x+a)/(d*x+c)^(7/2),x)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 853 vs. \(2 (132) = 264\).

Time = 0.11 (sec) , antiderivative size = 853, normalized size of antiderivative = 4.90 \[ \int \frac {\cosh (a+b x)}{(c+d x)^{7/2}} \, dx =\text {Too large to display} \] Input:

integrate(cosh(b*x+a)/(d*x+c)^(7/2),x, algorithm="fricas")
 

Output:

-1/15*(4*sqrt(pi)*((b^2*d^3*x^3 + 3*b^2*c*d^2*x^2 + 3*b^2*c^2*d*x + b^2*c^ 
3)*cosh(b*x + a)*cosh(-(b*c - a*d)/d) - (b^2*d^3*x^3 + 3*b^2*c*d^2*x^2 + 3 
*b^2*c^2*d*x + b^2*c^3)*cosh(b*x + a)*sinh(-(b*c - a*d)/d) + ((b^2*d^3*x^3 
 + 3*b^2*c*d^2*x^2 + 3*b^2*c^2*d*x + b^2*c^3)*cosh(-(b*c - a*d)/d) - (b^2* 
d^3*x^3 + 3*b^2*c*d^2*x^2 + 3*b^2*c^2*d*x + b^2*c^3)*sinh(-(b*c - a*d)/d)) 
*sinh(b*x + a))*sqrt(b/d)*erf(sqrt(d*x + c)*sqrt(b/d)) + 4*sqrt(pi)*((b^2* 
d^3*x^3 + 3*b^2*c*d^2*x^2 + 3*b^2*c^2*d*x + b^2*c^3)*cosh(b*x + a)*cosh(-( 
b*c - a*d)/d) + (b^2*d^3*x^3 + 3*b^2*c*d^2*x^2 + 3*b^2*c^2*d*x + b^2*c^3)* 
cosh(b*x + a)*sinh(-(b*c - a*d)/d) + ((b^2*d^3*x^3 + 3*b^2*c*d^2*x^2 + 3*b 
^2*c^2*d*x + b^2*c^3)*cosh(-(b*c - a*d)/d) + (b^2*d^3*x^3 + 3*b^2*c*d^2*x^ 
2 + 3*b^2*c^2*d*x + b^2*c^3)*sinh(-(b*c - a*d)/d))*sinh(b*x + a))*sqrt(-b/ 
d)*erf(sqrt(d*x + c)*sqrt(-b/d)) + (4*b^2*d^2*x^2 + 4*b^2*c^2 - 2*b*c*d + 
(4*b^2*d^2*x^2 + 4*b^2*c^2 + 2*b*c*d + 3*d^2 + 2*(4*b^2*c*d + b*d^2)*x)*co 
sh(b*x + a)^2 + 2*(4*b^2*d^2*x^2 + 4*b^2*c^2 + 2*b*c*d + 3*d^2 + 2*(4*b^2* 
c*d + b*d^2)*x)*cosh(b*x + a)*sinh(b*x + a) + (4*b^2*d^2*x^2 + 4*b^2*c^2 + 
 2*b*c*d + 3*d^2 + 2*(4*b^2*c*d + b*d^2)*x)*sinh(b*x + a)^2 + 3*d^2 + 2*(4 
*b^2*c*d - b*d^2)*x)*sqrt(d*x + c))/((d^6*x^3 + 3*c*d^5*x^2 + 3*c^2*d^4*x 
+ c^3*d^3)*cosh(b*x + a) + (d^6*x^3 + 3*c*d^5*x^2 + 3*c^2*d^4*x + c^3*d^3) 
*sinh(b*x + a))
 

Sympy [F]

\[ \int \frac {\cosh (a+b x)}{(c+d x)^{7/2}} \, dx=\int \frac {\cosh {\left (a + b x \right )}}{\left (c + d x\right )^{\frac {7}{2}}}\, dx \] Input:

integrate(cosh(b*x+a)/(d*x+c)**(7/2),x)
 

Output:

Integral(cosh(a + b*x)/(c + d*x)**(7/2), x)
 

Maxima [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.66 \[ \int \frac {\cosh (a+b x)}{(c+d x)^{7/2}} \, dx=\frac {\frac {{\left (\frac {\left (\frac {{\left (d x + c\right )} b}{d}\right )^{\frac {3}{2}} e^{\left (-a + \frac {b c}{d}\right )} \Gamma \left (-\frac {3}{2}, \frac {{\left (d x + c\right )} b}{d}\right )}{{\left (d x + c\right )}^{\frac {3}{2}}} - \frac {\left (-\frac {{\left (d x + c\right )} b}{d}\right )^{\frac {3}{2}} e^{\left (a - \frac {b c}{d}\right )} \Gamma \left (-\frac {3}{2}, -\frac {{\left (d x + c\right )} b}{d}\right )}{{\left (d x + c\right )}^{\frac {3}{2}}}\right )} b}{d} - \frac {2 \, \cosh \left (b x + a\right )}{{\left (d x + c\right )}^{\frac {5}{2}}}}{5 \, d} \] Input:

integrate(cosh(b*x+a)/(d*x+c)^(7/2),x, algorithm="maxima")
 

Output:

1/5*((((d*x + c)*b/d)^(3/2)*e^(-a + b*c/d)*gamma(-3/2, (d*x + c)*b/d)/(d*x 
 + c)^(3/2) - (-(d*x + c)*b/d)^(3/2)*e^(a - b*c/d)*gamma(-3/2, -(d*x + c)* 
b/d)/(d*x + c)^(3/2))*b/d - 2*cosh(b*x + a)/(d*x + c)^(5/2))/d
 

Giac [F]

\[ \int \frac {\cosh (a+b x)}{(c+d x)^{7/2}} \, dx=\int { \frac {\cosh \left (b x + a\right )}{{\left (d x + c\right )}^{\frac {7}{2}}} \,d x } \] Input:

integrate(cosh(b*x+a)/(d*x+c)^(7/2),x, algorithm="giac")
 

Output:

integrate(cosh(b*x + a)/(d*x + c)^(7/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cosh (a+b x)}{(c+d x)^{7/2}} \, dx=\int \frac {\mathrm {cosh}\left (a+b\,x\right )}{{\left (c+d\,x\right )}^{7/2}} \,d x \] Input:

int(cosh(a + b*x)/(c + d*x)^(7/2),x)
 

Output:

int(cosh(a + b*x)/(c + d*x)^(7/2), x)
 

Reduce [F]

\[ \int \frac {\cosh (a+b x)}{(c+d x)^{7/2}} \, dx=\int \frac {\cosh \left (b x +a \right )}{\sqrt {d x +c}\, c^{3}+3 \sqrt {d x +c}\, c^{2} d x +3 \sqrt {d x +c}\, c \,d^{2} x^{2}+\sqrt {d x +c}\, d^{3} x^{3}}d x \] Input:

int(cosh(b*x+a)/(d*x+c)^(7/2),x)
 

Output:

int(cosh(a + b*x)/(sqrt(c + d*x)*c**3 + 3*sqrt(c + d*x)*c**2*d*x + 3*sqrt( 
c + d*x)*c*d**2*x**2 + sqrt(c + d*x)*d**3*x**3),x)