\(\int \frac {x^2 \cosh (c+d x)}{a+b x^3} \, dx\) [96]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 283 \[ \int \frac {x^2 \cosh (c+d x)}{a+b x^3} \, dx=\frac {\cosh \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Chi}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 b}+\frac {\cosh \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Chi}\left (-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 b}+\frac {\cosh \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Chi}\left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 b}-\frac {\sinh \left (c+\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Shi}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 b}+\frac {\sinh \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Shi}\left (\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 b}+\frac {\sinh \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Shi}\left (\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}+d x\right )}{3 b} \] Output:

1/3*cosh(c+(-1)^(1/3)*a^(1/3)*d/b^(1/3))*Chi((-1)^(1/3)*a^(1/3)*d/b^(1/3)- 
d*x)/b+1/3*cosh(c-(-1)^(2/3)*a^(1/3)*d/b^(1/3))*Chi(-(-1)^(2/3)*a^(1/3)*d/ 
b^(1/3)-d*x)/b+1/3*cosh(c-a^(1/3)*d/b^(1/3))*Chi(a^(1/3)*d/b^(1/3)+d*x)/b+ 
1/3*sinh(c+(-1)^(1/3)*a^(1/3)*d/b^(1/3))*Shi(-(-1)^(1/3)*a^(1/3)*d/b^(1/3) 
+d*x)/b+1/3*sinh(c-a^(1/3)*d/b^(1/3))*Shi(a^(1/3)*d/b^(1/3)+d*x)/b+1/3*sin 
h(c-(-1)^(2/3)*a^(1/3)*d/b^(1/3))*Shi((-1)^(2/3)*a^(1/3)*d/b^(1/3)+d*x)/b
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4 in optimal.

Time = 5.04 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.60 \[ \int \frac {x^2 \cosh (c+d x)}{a+b x^3} \, dx=\frac {\text {RootSum}\left [a+b \text {$\#$1}^3\&,\cosh (c+d \text {$\#$1}) \text {Chi}(d (x-\text {$\#$1}))-\text {Chi}(d (x-\text {$\#$1})) \sinh (c+d \text {$\#$1})-\cosh (c+d \text {$\#$1}) \text {Shi}(d (x-\text {$\#$1}))+\sinh (c+d \text {$\#$1}) \text {Shi}(d (x-\text {$\#$1}))\&\right ]+\text {RootSum}\left [a+b \text {$\#$1}^3\&,\cosh (c+d \text {$\#$1}) \text {Chi}(d (x-\text {$\#$1}))+\text {Chi}(d (x-\text {$\#$1})) \sinh (c+d \text {$\#$1})+\cosh (c+d \text {$\#$1}) \text {Shi}(d (x-\text {$\#$1}))+\sinh (c+d \text {$\#$1}) \text {Shi}(d (x-\text {$\#$1}))\&\right ]}{6 b} \] Input:

Integrate[(x^2*Cosh[c + d*x])/(a + b*x^3),x]
 

Output:

(RootSum[a + b*#1^3 & , Cosh[c + d*#1]*CoshIntegral[d*(x - #1)] - CoshInte 
gral[d*(x - #1)]*Sinh[c + d*#1] - Cosh[c + d*#1]*SinhIntegral[d*(x - #1)] 
+ Sinh[c + d*#1]*SinhIntegral[d*(x - #1)] & ] + RootSum[a + b*#1^3 & , Cos 
h[c + d*#1]*CoshIntegral[d*(x - #1)] + CoshIntegral[d*(x - #1)]*Sinh[c + d 
*#1] + Cosh[c + d*#1]*SinhIntegral[d*(x - #1)] + Sinh[c + d*#1]*SinhIntegr 
al[d*(x - #1)] & ])/(6*b)
 

Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 283, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {5816, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \cosh (c+d x)}{a+b x^3} \, dx\)

\(\Big \downarrow \) 5816

\(\displaystyle \int \left (\frac {\cosh (c+d x)}{3 b^{2/3} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}+\frac {\cosh (c+d x)}{3 b^{2/3} \left (\sqrt [3]{b} x-\sqrt [3]{-1} \sqrt [3]{a}\right )}+\frac {\cosh (c+d x)}{3 b^{2/3} \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} x\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\cosh \left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}+c\right ) \text {Chi}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 b}+\frac {\cosh \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Chi}\left (-x d-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b}+\frac {\cosh \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Chi}\left (x d+\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b}-\frac {\sinh \left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}+c\right ) \text {Shi}\left (\frac {\sqrt [3]{-1} \sqrt [3]{a} d}{\sqrt [3]{b}}-d x\right )}{3 b}+\frac {\sinh \left (c-\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Shi}\left (x d+\frac {\sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b}+\frac {\sinh \left (c-\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \text {Shi}\left (x d+\frac {(-1)^{2/3} \sqrt [3]{a} d}{\sqrt [3]{b}}\right )}{3 b}\)

Input:

Int[(x^2*Cosh[c + d*x])/(a + b*x^3),x]
 

Output:

(Cosh[c + ((-1)^(1/3)*a^(1/3)*d)/b^(1/3)]*CoshIntegral[((-1)^(1/3)*a^(1/3) 
*d)/b^(1/3) - d*x])/(3*b) + (Cosh[c - ((-1)^(2/3)*a^(1/3)*d)/b^(1/3)]*Cosh 
Integral[-(((-1)^(2/3)*a^(1/3)*d)/b^(1/3)) - d*x])/(3*b) + (Cosh[c - (a^(1 
/3)*d)/b^(1/3)]*CoshIntegral[(a^(1/3)*d)/b^(1/3) + d*x])/(3*b) - (Sinh[c + 
 ((-1)^(1/3)*a^(1/3)*d)/b^(1/3)]*SinhIntegral[((-1)^(1/3)*a^(1/3)*d)/b^(1/ 
3) - d*x])/(3*b) + (Sinh[c - (a^(1/3)*d)/b^(1/3)]*SinhIntegral[(a^(1/3)*d) 
/b^(1/3) + d*x])/(3*b) + (Sinh[c - ((-1)^(2/3)*a^(1/3)*d)/b^(1/3)]*SinhInt 
egral[((-1)^(2/3)*a^(1/3)*d)/b^(1/3) + d*x])/(3*b)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5816
Int[Cosh[(c_.) + (d_.)*(x_)]*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Sy 
mbol] :> Int[ExpandIntegrand[Cosh[c + d*x], x^m*(a + b*x^n)^p, x], x] /; Fr 
eeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IntegerQ[m] && IGtQ[n, 0] && (EqQ[n, 
2] || EqQ[p, -1])
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.58 (sec) , antiderivative size = 423, normalized size of antiderivative = 1.49

method result size
risch \(-\frac {c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 c b \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +d^{3} a -b \,c^{3}\right )}{\sum }\frac {{\mathrm e}^{\textit {\_R1}} \operatorname {expIntegral}_{1}\left (-d x +\textit {\_R1} -c \right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{6 b}-\frac {c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 c b \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +d^{3} a -b \,c^{3}\right )}{\sum }\frac {{\mathrm e}^{-\textit {\_R1}} \operatorname {expIntegral}_{1}\left (d x -\textit {\_R1} +c \right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{6 b}+\frac {c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 c b \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +d^{3} a -b \,c^{3}\right )}{\sum }\frac {\textit {\_R1} \,{\mathrm e}^{\textit {\_R1}} \operatorname {expIntegral}_{1}\left (-d x +\textit {\_R1} -c \right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b}+\frac {c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 c b \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +d^{3} a -b \,c^{3}\right )}{\sum }\frac {\textit {\_R1} \,{\mathrm e}^{-\textit {\_R1}} \operatorname {expIntegral}_{1}\left (d x -\textit {\_R1} +c \right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}\right )}{3 b}-\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 c b \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +d^{3} a -b \,c^{3}\right )}{\sum }\frac {\textit {\_R1}^{2} {\mathrm e}^{\textit {\_R1}} \operatorname {expIntegral}_{1}\left (-d x +\textit {\_R1} -c \right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}}{6 b}-\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}-3 c b \,\textit {\_Z}^{2}+3 b \,c^{2} \textit {\_Z} +d^{3} a -b \,c^{3}\right )}{\sum }\frac {\textit {\_R1}^{2} {\mathrm e}^{-\textit {\_R1}} \operatorname {expIntegral}_{1}\left (d x -\textit {\_R1} +c \right )}{\textit {\_R1}^{2}-2 \textit {\_R1} c +c^{2}}}{6 b}\) \(423\)

Input:

int(x^2*cosh(d*x+c)/(b*x^3+a),x,method=_RETURNVERBOSE)
 

Output:

-1/6/b*c^2*sum(1/(_R1^2-2*_R1*c+c^2)*exp(_R1)*Ei(1,-d*x+_R1-c),_R1=RootOf( 
_Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d^3-b*c^3))-1/6/b*c^2*sum(1/(_R1^2-2*_R1*c+ 
c^2)*exp(-_R1)*Ei(1,d*x-_R1+c),_R1=RootOf(_Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d 
^3-b*c^3))+1/3/b*c*sum(_R1/(_R1^2-2*_R1*c+c^2)*exp(_R1)*Ei(1,-d*x+_R1-c),_ 
R1=RootOf(_Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d^3-b*c^3))+1/3/b*c*sum(_R1/(_R1^ 
2-2*_R1*c+c^2)*exp(-_R1)*Ei(1,d*x-_R1+c),_R1=RootOf(_Z^3*b-3*_Z^2*b*c+3*_Z 
*b*c^2+a*d^3-b*c^3))-1/6/b*sum(_R1^2/(_R1^2-2*_R1*c+c^2)*exp(_R1)*Ei(1,-d* 
x+_R1-c),_R1=RootOf(_Z^3*b-3*_Z^2*b*c+3*_Z*b*c^2+a*d^3-b*c^3))-1/6/b*sum(_ 
R1^2/(_R1^2-2*_R1*c+c^2)*exp(-_R1)*Ei(1,d*x-_R1+c),_R1=RootOf(_Z^3*b-3*_Z^ 
2*b*c+3*_Z*b*c^2+a*d^3-b*c^3))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 500 vs. \(2 (207) = 414\).

Time = 0.10 (sec) , antiderivative size = 500, normalized size of antiderivative = 1.77 \[ \int \frac {x^2 \cosh (c+d x)}{a+b x^3} \, dx =\text {Too large to display} \] Input:

integrate(x^2*cosh(d*x+c)/(b*x^3+a),x, algorithm="fricas")
 

Output:

1/6*(Ei(d*x - 1/2*(a*d^3/b)^(1/3)*(sqrt(-3) + 1))*cosh(1/2*(a*d^3/b)^(1/3) 
*(sqrt(-3) + 1) + c) + Ei(-d*x - 1/2*(-a*d^3/b)^(1/3)*(sqrt(-3) + 1))*cosh 
(1/2*(-a*d^3/b)^(1/3)*(sqrt(-3) + 1) - c) + Ei(d*x + 1/2*(a*d^3/b)^(1/3)*( 
sqrt(-3) - 1))*cosh(1/2*(a*d^3/b)^(1/3)*(sqrt(-3) - 1) - c) + Ei(-d*x + 1/ 
2*(-a*d^3/b)^(1/3)*(sqrt(-3) - 1))*cosh(1/2*(-a*d^3/b)^(1/3)*(sqrt(-3) - 1 
) + c) + Ei(-d*x + (-a*d^3/b)^(1/3))*cosh(c + (-a*d^3/b)^(1/3)) + Ei(d*x + 
 (a*d^3/b)^(1/3))*cosh(-c + (a*d^3/b)^(1/3)) + Ei(d*x - 1/2*(a*d^3/b)^(1/3 
)*(sqrt(-3) + 1))*sinh(1/2*(a*d^3/b)^(1/3)*(sqrt(-3) + 1) + c) + Ei(-d*x - 
 1/2*(-a*d^3/b)^(1/3)*(sqrt(-3) + 1))*sinh(1/2*(-a*d^3/b)^(1/3)*(sqrt(-3) 
+ 1) - c) - Ei(d*x + 1/2*(a*d^3/b)^(1/3)*(sqrt(-3) - 1))*sinh(1/2*(a*d^3/b 
)^(1/3)*(sqrt(-3) - 1) - c) - Ei(-d*x + 1/2*(-a*d^3/b)^(1/3)*(sqrt(-3) - 1 
))*sinh(1/2*(-a*d^3/b)^(1/3)*(sqrt(-3) - 1) + c) - Ei(-d*x + (-a*d^3/b)^(1 
/3))*sinh(c + (-a*d^3/b)^(1/3)) - Ei(d*x + (a*d^3/b)^(1/3))*sinh(-c + (a*d 
^3/b)^(1/3)))/b
 

Sympy [F]

\[ \int \frac {x^2 \cosh (c+d x)}{a+b x^3} \, dx=\int \frac {x^{2} \cosh {\left (c + d x \right )}}{a + b x^{3}}\, dx \] Input:

integrate(x**2*cosh(d*x+c)/(b*x**3+a),x)
                                                                                    
                                                                                    
 

Output:

Integral(x**2*cosh(c + d*x)/(a + b*x**3), x)
 

Maxima [F]

\[ \int \frac {x^2 \cosh (c+d x)}{a+b x^3} \, dx=\int { \frac {x^{2} \cosh \left (d x + c\right )}{b x^{3} + a} \,d x } \] Input:

integrate(x^2*cosh(d*x+c)/(b*x^3+a),x, algorithm="maxima")
 

Output:

1/2*((d*x^2*e^(2*c) + x*e^(2*c))*e^(d*x) - (d*x^2 - x)*e^(-d*x))/(b*d^2*x^ 
3*e^c + a*d^2*e^c) + 1/2*integrate((2*b*x^3*e^c - 3*a*d*x*e^c - a*e^c)*e^( 
d*x)/(b^2*d^2*x^6 + 2*a*b*d^2*x^3 + a^2*d^2), x) + 1/2*integrate((2*b*x^3 
+ 3*a*d*x - a)*e^(-d*x)/(b^2*d^2*x^6*e^c + 2*a*b*d^2*x^3*e^c + a^2*d^2*e^c 
), x)
 

Giac [F]

\[ \int \frac {x^2 \cosh (c+d x)}{a+b x^3} \, dx=\int { \frac {x^{2} \cosh \left (d x + c\right )}{b x^{3} + a} \,d x } \] Input:

integrate(x^2*cosh(d*x+c)/(b*x^3+a),x, algorithm="giac")
 

Output:

integrate(x^2*cosh(d*x + c)/(b*x^3 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \cosh (c+d x)}{a+b x^3} \, dx=\int \frac {x^2\,\mathrm {cosh}\left (c+d\,x\right )}{b\,x^3+a} \,d x \] Input:

int((x^2*cosh(c + d*x))/(a + b*x^3),x)
 

Output:

int((x^2*cosh(c + d*x))/(a + b*x^3), x)
 

Reduce [F]

\[ \int \frac {x^2 \cosh (c+d x)}{a+b x^3} \, dx=\int \frac {\cosh \left (d x +c \right ) x^{2}}{b \,x^{3}+a}d x \] Input:

int(x^2*cosh(d*x+c)/(b*x^3+a),x)
 

Output:

int((cosh(c + d*x)*x**2)/(a + b*x**3),x)