\(\int \frac {\cosh ^{\frac {3}{2}}(a+b \log (c x^n))}{x} \, dx\) [253]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 67 \[ \int \frac {\cosh ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {2 i \operatorname {EllipticF}\left (\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right ),2\right )}{3 b n}+\frac {2 \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )} \sinh \left (a+b \log \left (c x^n\right )\right )}{3 b n} \] Output:

-2/3*I*InverseJacobiAM(1/2*I*(a+b*ln(c*x^n)),2^(1/2))/b/n+2/3*cosh(a+b*ln( 
c*x^n))^(1/2)*sinh(a+b*ln(c*x^n))/b/n
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.09 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.70 \[ \int \frac {\cosh ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {\sinh \left (2 \left (a+b \log \left (c x^n\right )\right )\right )+2 \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\cosh \left (2 \left (a+b \log \left (c x^n\right )\right )\right )-\sinh \left (2 \left (a+b \log \left (c x^n\right )\right )\right )\right ) \sqrt {1+\cosh \left (2 \left (a+b \log \left (c x^n\right )\right )\right )+\sinh \left (2 \left (a+b \log \left (c x^n\right )\right )\right )}}{3 b n \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )}} \] Input:

Integrate[Cosh[a + b*Log[c*x^n]]^(3/2)/x,x]
 

Output:

(Sinh[2*(a + b*Log[c*x^n])] + 2*Hypergeometric2F1[1/4, 1/2, 5/4, -Cosh[2*( 
a + b*Log[c*x^n])] - Sinh[2*(a + b*Log[c*x^n])]]*Sqrt[1 + Cosh[2*(a + b*Lo 
g[c*x^n])] + Sinh[2*(a + b*Log[c*x^n])]])/(3*b*n*Sqrt[Cosh[a + b*Log[c*x^n 
]]])
 

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.97, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {3039, 3042, 3115, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cosh ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx\)

\(\Big \downarrow \) 3039

\(\displaystyle \frac {\int \cosh ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sin \left (i a+i b \log \left (c x^n\right )+\frac {\pi }{2}\right )^{3/2}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {\frac {1}{3} \int \frac {1}{\sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )+\frac {2 \sinh \left (a+b \log \left (c x^n\right )\right ) \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )}}{3 b}}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \sinh \left (a+b \log \left (c x^n\right )\right ) \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )}}{3 b}+\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (i a+i b \log \left (c x^n\right )+\frac {\pi }{2}\right )}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {2 \sinh \left (a+b \log \left (c x^n\right )\right ) \sqrt {\cosh \left (a+b \log \left (c x^n\right )\right )}}{3 b}-\frac {2 i \operatorname {EllipticF}\left (\frac {1}{2} i \left (a+b \log \left (c x^n\right )\right ),2\right )}{3 b}}{n}\)

Input:

Int[Cosh[a + b*Log[c*x^n]]^(3/2)/x,x]
 

Output:

((((-2*I)/3)*EllipticF[(I/2)*(a + b*Log[c*x^n]), 2])/b + (2*Sqrt[Cosh[a + 
b*Log[c*x^n]]]*Sinh[a + b*Log[c*x^n]])/(3*b))/n
 

Defintions of rubi rules used

rule 3039
Int[u_, x_Symbol] :> With[{lst = FunctionOfLog[Cancel[x*u], x]}, Simp[1/lst 
[[3]]   Subst[Int[lst[[1]], x], x, Log[lst[[2]]]], x] /;  !FalseQ[lst]] /; 
NonsumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(236\) vs. \(2(59)=118\).

Time = 2.94 (sec) , antiderivative size = 237, normalized size of antiderivative = 3.54

method result size
derivativedivides \(\frac {2 \sqrt {\left (2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1\right ) {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \left (4 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{5}-6 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{3}+\sqrt {-{\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sqrt {-2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}+1}\, \operatorname {EllipticF}\left (\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right )+2 \cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )}{3 n \sqrt {2 {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}+{\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) \sqrt {2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1}\, b}\) \(237\)
default \(\frac {2 \sqrt {\left (2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1\right ) {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \left (4 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{5}-6 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{3}+\sqrt {-{\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sqrt {-2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}+1}\, \operatorname {EllipticF}\left (\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right )+2 \cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )\right )}{3 n \sqrt {2 {\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}+{\sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sinh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) \sqrt {2 {\cosh \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1}\, b}\) \(237\)

Input:

int(cosh(a+b*ln(c*x^n))^(3/2)/x,x,method=_RETURNVERBOSE)
 

Output:

2/3/n*((2*cosh(1/2*a+1/2*b*ln(c*x^n))^2-1)*sinh(1/2*a+1/2*b*ln(c*x^n))^2)^ 
(1/2)*(4*cosh(1/2*a+1/2*b*ln(c*x^n))^5-6*cosh(1/2*a+1/2*b*ln(c*x^n))^3+(-s 
inh(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)*(-2*cosh(1/2*a+1/2*b*ln(c*x^n))^2+1)^( 
1/2)*EllipticF(cosh(1/2*a+1/2*b*ln(c*x^n)),2^(1/2))+2*cosh(1/2*a+1/2*b*ln( 
c*x^n)))/(2*sinh(1/2*a+1/2*b*ln(c*x^n))^4+sinh(1/2*a+1/2*b*ln(c*x^n))^2)^( 
1/2)/sinh(1/2*a+1/2*b*ln(c*x^n))/(2*cosh(1/2*a+1/2*b*ln(c*x^n))^2-1)^(1/2) 
/b
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 170 vs. \(2 (58) = 116\).

Time = 0.09 (sec) , antiderivative size = 170, normalized size of antiderivative = 2.54 \[ \int \frac {\cosh ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {2 \, {\left (\sqrt {2} \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sqrt {2} \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right ) + {\left (\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 2 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} - 1\right )} \sqrt {\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}}{3 \, {\left (b n \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + b n \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )}} \] Input:

integrate(cosh(a+b*log(c*x^n))^(3/2)/x,x, algorithm="fricas")
 

Output:

1/3*(2*(sqrt(2)*cosh(b*n*log(x) + b*log(c) + a) + sqrt(2)*sinh(b*n*log(x) 
+ b*log(c) + a))*weierstrassPInverse(-4, 0, cosh(b*n*log(x) + b*log(c) + a 
) + sinh(b*n*log(x) + b*log(c) + a)) + (cosh(b*n*log(x) + b*log(c) + a)^2 
+ 2*cosh(b*n*log(x) + b*log(c) + a)*sinh(b*n*log(x) + b*log(c) + a) + sinh 
(b*n*log(x) + b*log(c) + a)^2 - 1)*sqrt(cosh(b*n*log(x) + b*log(c) + a)))/ 
(b*n*cosh(b*n*log(x) + b*log(c) + a) + b*n*sinh(b*n*log(x) + b*log(c) + a) 
)
 

Sympy [F]

\[ \int \frac {\cosh ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int \frac {\cosh ^{\frac {3}{2}}{\left (a + b \log {\left (c x^{n} \right )} \right )}}{x}\, dx \] Input:

integrate(cosh(a+b*ln(c*x**n))**(3/2)/x,x)
 

Output:

Integral(cosh(a + b*log(c*x**n))**(3/2)/x, x)
 

Maxima [F]

\[ \int \frac {\cosh ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int { \frac {\cosh \left (b \log \left (c x^{n}\right ) + a\right )^{\frac {3}{2}}}{x} \,d x } \] Input:

integrate(cosh(a+b*log(c*x^n))^(3/2)/x,x, algorithm="maxima")
 

Output:

integrate(cosh(b*log(c*x^n) + a)^(3/2)/x, x)
 

Giac [F]

\[ \int \frac {\cosh ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int { \frac {\cosh \left (b \log \left (c x^{n}\right ) + a\right )^{\frac {3}{2}}}{x} \,d x } \] Input:

integrate(cosh(a+b*log(c*x^n))^(3/2)/x,x, algorithm="giac")
 

Output:

integrate(cosh(b*log(c*x^n) + a)^(3/2)/x, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cosh ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int \frac {{\mathrm {cosh}\left (a+b\,\ln \left (c\,x^n\right )\right )}^{3/2}}{x} \,d x \] Input:

int(cosh(a + b*log(c*x^n))^(3/2)/x,x)
 

Output:

int(cosh(a + b*log(c*x^n))^(3/2)/x, x)
 

Reduce [F]

\[ \int \frac {\cosh ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int \frac {\sqrt {\cosh \left (\mathrm {log}\left (x^{n} c \right ) b +a \right )}\, \cosh \left (\mathrm {log}\left (x^{n} c \right ) b +a \right )}{x}d x \] Input:

int(cosh(a+b*log(c*x^n))^(3/2)/x,x)
                                                                                    
                                                                                    
 

Output:

int((sqrt(cosh(log(x**n*c)*b + a))*cosh(log(x**n*c)*b + a))/x,x)