\(\int \tanh ^p(a+\frac {\log (x)}{6}) \, dx\) [177]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 11, antiderivative size = 158 \[ \int \tanh ^p\left (a+\frac {\log (x)}{6}\right ) \, dx=-e^{-6 a} p \left (-1+e^{2 a} \sqrt [3]{x}\right )^{1+p} \left (1+e^{2 a} \sqrt [3]{x}\right )^{1-p}+e^{-4 a} \left (-1+e^{2 a} \sqrt [3]{x}\right )^{1+p} \left (1+e^{2 a} \sqrt [3]{x}\right )^{1-p} \sqrt [3]{x}+\frac {2^{-p} e^{-6 a} \left (1+2 p^2\right ) \left (-1+e^{2 a} \sqrt [3]{x}\right )^{1+p} \operatorname {Hypergeometric2F1}\left (p,1+p,2+p,\frac {1}{2} \left (1-e^{2 a} \sqrt [3]{x}\right )\right )}{1+p} \] Output:

-p*(-1+exp(2*a)*x^(1/3))^(p+1)*(1+exp(2*a)*x^(1/3))^(1-p)/exp(6*a)+(-1+exp 
(2*a)*x^(1/3))^(p+1)*(1+exp(2*a)*x^(1/3))^(1-p)*x^(1/3)/exp(4*a)+(2*p^2+1) 
*(-1+exp(2*a)*x^(1/3))^(p+1)*hypergeom([p, p+1],[2+p],1/2-1/2*exp(2*a)*x^( 
1/3))/(2^p)/exp(6*a)/(p+1)
 

Mathematica [A] (verified)

Time = 0.69 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.89 \[ \int \tanh ^p\left (a+\frac {\log (x)}{6}\right ) \, dx=\frac {e^{-6 a} \left (-1+e^{2 a} \sqrt [3]{x}\right ) \left (\frac {-1+e^{2 a} \sqrt [3]{x}}{2+2 e^{2 a} \sqrt [3]{x}}\right )^p \left (2^p (1+p) \left (1+e^{2 a} \sqrt [3]{x}\right ) \left (-p+e^{2 a} \sqrt [3]{x}\right )+\left (1+2 p^2\right ) \left (1+e^{2 a} \sqrt [3]{x}\right )^p \operatorname {Hypergeometric2F1}\left (p,1+p,2+p,\frac {1}{2}-\frac {1}{2} e^{2 a} \sqrt [3]{x}\right )\right )}{1+p} \] Input:

Integrate[Tanh[a + Log[x]/6]^p,x]
 

Output:

((-1 + E^(2*a)*x^(1/3))*((-1 + E^(2*a)*x^(1/3))/(2 + 2*E^(2*a)*x^(1/3)))^p 
*(2^p*(1 + p)*(1 + E^(2*a)*x^(1/3))*(-p + E^(2*a)*x^(1/3)) + (1 + 2*p^2)*( 
1 + E^(2*a)*x^(1/3))^p*Hypergeometric2F1[p, 1 + p, 2 + p, 1/2 - (E^(2*a)*x 
^(1/3))/2]))/(E^(6*a)*(1 + p))
 

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.09, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {6067, 900, 101, 90, 79}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tanh ^p\left (a+\frac {\log (x)}{6}\right ) \, dx\)

\(\Big \downarrow \) 6067

\(\displaystyle \int \left (e^{2 a} \sqrt [3]{x}-1\right )^p \left (e^{2 a} \sqrt [3]{x}+1\right )^{-p}dx\)

\(\Big \downarrow \) 900

\(\displaystyle 3 \int \left (e^{2 a} \sqrt [3]{x}-1\right )^p \left (e^{2 a} \sqrt [3]{x}+1\right )^{-p} x^{2/3}d\sqrt [3]{x}\)

\(\Big \downarrow \) 101

\(\displaystyle 3 \left (\frac {1}{3} e^{-4 a} \int \left (e^{2 a} \sqrt [3]{x}-1\right )^p \left (e^{2 a} \sqrt [3]{x}+1\right )^{-p} \left (1-2 e^{2 a} p \sqrt [3]{x}\right )d\sqrt [3]{x}+\frac {1}{3} e^{-4 a} \sqrt [3]{x} \left (e^{2 a} \sqrt [3]{x}-1\right )^{p+1} \left (e^{2 a} \sqrt [3]{x}+1\right )^{1-p}\right )\)

\(\Big \downarrow \) 90

\(\displaystyle 3 \left (\frac {1}{3} e^{-4 a} \left (\left (2 p^2+1\right ) \int \left (e^{2 a} \sqrt [3]{x}-1\right )^p \left (e^{2 a} \sqrt [3]{x}+1\right )^{-p}d\sqrt [3]{x}-e^{-2 a} p \left (e^{2 a} \sqrt [3]{x}-1\right )^{p+1} \left (e^{2 a} \sqrt [3]{x}+1\right )^{1-p}\right )+\frac {1}{3} e^{-4 a} \sqrt [3]{x} \left (e^{2 a} \sqrt [3]{x}-1\right )^{p+1} \left (e^{2 a} \sqrt [3]{x}+1\right )^{1-p}\right )\)

\(\Big \downarrow \) 79

\(\displaystyle 3 \left (\frac {1}{3} e^{-4 a} \left (\frac {e^{-2 a} 2^{-p} \left (2 p^2+1\right ) \left (e^{2 a} \sqrt [3]{x}-1\right )^{p+1} \operatorname {Hypergeometric2F1}\left (p,p+1,p+2,\frac {1}{2} \left (1-e^{2 a} \sqrt [3]{x}\right )\right )}{p+1}-e^{-2 a} p \left (e^{2 a} \sqrt [3]{x}-1\right )^{p+1} \left (e^{2 a} \sqrt [3]{x}+1\right )^{1-p}\right )+\frac {1}{3} e^{-4 a} \sqrt [3]{x} \left (e^{2 a} \sqrt [3]{x}-1\right )^{p+1} \left (e^{2 a} \sqrt [3]{x}+1\right )^{1-p}\right )\)

Input:

Int[Tanh[a + Log[x]/6]^p,x]
 

Output:

3*(((-1 + E^(2*a)*x^(1/3))^(1 + p)*(1 + E^(2*a)*x^(1/3))^(1 - p)*x^(1/3))/ 
(3*E^(4*a)) + (-((p*(-1 + E^(2*a)*x^(1/3))^(1 + p)*(1 + E^(2*a)*x^(1/3))^( 
1 - p))/E^(2*a)) + ((1 + 2*p^2)*(-1 + E^(2*a)*x^(1/3))^(1 + p)*Hypergeomet 
ric2F1[p, 1 + p, 2 + p, (1 - E^(2*a)*x^(1/3))/2])/(2^p*E^(2*a)*(1 + p)))/( 
3*E^(4*a)))
 

Defintions of rubi rules used

rule 79
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(( 
a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c - a*d))^n))*Hypergeometric2F1[-n, m + 1 
, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}, x] 
&&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] 
 ||  !(RationalQ[n] && GtQ[-d/(b*c - a*d), 0]))
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 101
Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^( 
p_), x_] :> Simp[b*(a + b*x)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + 
 p + 3))), x] + Simp[1/(d*f*(n + p + 3))   Int[(c + d*x)^n*(e + f*x)^p*Simp 
[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f 
*(n + p + 4) - b*(d*e*(n + 2) + c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, 
 c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]
 

rule 900
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol 
] :> With[{g = Denominator[n]}, Simp[g   Subst[Int[x^(g - 1)*(a + b*x^(g*n) 
)^p*(c + d*x^(g*n))^q, x], x, x^(1/g)], x]] /; FreeQ[{a, b, c, d, p, q}, x] 
 && NeQ[b*c - a*d, 0] && FractionQ[n]
 

rule 6067
Int[Tanh[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Int[(-1 + E^(2* 
a*d)*x^(2*b*d))^p/(1 + E^(2*a*d)*x^(2*b*d))^p, x] /; FreeQ[{a, b, d, p}, x]
 
Maple [F]

\[\int \tanh \left (a +\frac {\ln \left (x \right )}{6}\right )^{p}d x\]

Input:

int(tanh(a+1/6*ln(x))^p,x)
 

Output:

int(tanh(a+1/6*ln(x))^p,x)
 

Fricas [F]

\[ \int \tanh ^p\left (a+\frac {\log (x)}{6}\right ) \, dx=\int { \tanh \left (a + \frac {1}{6} \, \log \left (x\right )\right )^{p} \,d x } \] Input:

integrate(tanh(a+1/6*log(x))^p,x, algorithm="fricas")
 

Output:

integral(tanh(a + 1/6*log(x))^p, x)
 

Sympy [F]

\[ \int \tanh ^p\left (a+\frac {\log (x)}{6}\right ) \, dx=\int \tanh ^{p}{\left (a + \frac {\log {\left (x \right )}}{6} \right )}\, dx \] Input:

integrate(tanh(a+1/6*ln(x))**p,x)
 

Output:

Integral(tanh(a + log(x)/6)**p, x)
 

Maxima [F]

\[ \int \tanh ^p\left (a+\frac {\log (x)}{6}\right ) \, dx=\int { \tanh \left (a + \frac {1}{6} \, \log \left (x\right )\right )^{p} \,d x } \] Input:

integrate(tanh(a+1/6*log(x))^p,x, algorithm="maxima")
 

Output:

integrate(tanh(a + 1/6*log(x))^p, x)
 

Giac [F]

\[ \int \tanh ^p\left (a+\frac {\log (x)}{6}\right ) \, dx=\int { \tanh \left (a + \frac {1}{6} \, \log \left (x\right )\right )^{p} \,d x } \] Input:

integrate(tanh(a+1/6*log(x))^p,x, algorithm="giac")
 

Output:

integrate(tanh(a + 1/6*log(x))^p, x)
 

Mupad [F(-1)]

Timed out. \[ \int \tanh ^p\left (a+\frac {\log (x)}{6}\right ) \, dx=\int {\mathrm {tanh}\left (a+\frac {\ln \left (x\right )}{6}\right )}^p \,d x \] Input:

int(tanh(a + log(x)/6)^p,x)
 

Output:

int(tanh(a + log(x)/6)^p, x)
 

Reduce [F]

\[ \int \tanh ^p\left (a+\frac {\log (x)}{6}\right ) \, dx=\tanh \left (\frac {\mathrm {log}\left (x \right )}{6}+a \right )^{p} x -\frac {\left (\int \frac {\tanh \left (\frac {\mathrm {log}\left (x \right )}{6}+a \right )^{p}}{\tanh \left (\frac {\mathrm {log}\left (x \right )}{6}+a \right )}d x \right ) p}{6}+\frac {\left (\int \tanh \left (\frac {\mathrm {log}\left (x \right )}{6}+a \right )^{p} \tanh \left (\frac {\mathrm {log}\left (x \right )}{6}+a \right )d x \right ) p}{6} \] Input:

int(tanh(a+1/6*log(x))^p,x)
 

Output:

(6*tanh((log(x) + 6*a)/6)**p*x - int(tanh((log(x) + 6*a)/6)**p/tanh((log(x 
) + 6*a)/6),x)*p + int(tanh((log(x) + 6*a)/6)**p*tanh((log(x) + 6*a)/6),x) 
*p)/6