\(\int e^x \tanh ^2(2 x) \, dx\) [224]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 10, antiderivative size = 88 \[ \int e^x \tanh ^2(2 x) \, dx=e^x+\frac {e^x}{1+e^{4 x}}+\frac {\arctan \left (1-\sqrt {2} e^x\right )}{2 \sqrt {2}}-\frac {\arctan \left (1+\sqrt {2} e^x\right )}{2 \sqrt {2}}-\frac {\text {arctanh}\left (\frac {\sqrt {2} e^x}{1+e^{2 x}}\right )}{2 \sqrt {2}} \] Output:

exp(x)+exp(x)/(1+exp(4*x))-1/4*arctan(-1+2^(1/2)*exp(x))*2^(1/2)-1/4*arcta 
n(1+2^(1/2)*exp(x))*2^(1/2)-1/4*arctanh(2^(1/2)*exp(x)/(1+exp(2*x)))*2^(1/ 
2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.04 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.55 \[ \int e^x \tanh ^2(2 x) \, dx=e^x+\frac {e^x}{1+e^{4 x}}+\frac {1}{4} \text {RootSum}\left [1+\text {$\#$1}^4\&,\frac {x-\log \left (e^x-\text {$\#$1}\right )}{\text {$\#$1}^3}\&\right ] \] Input:

Integrate[E^x*Tanh[2*x]^2,x]
 

Output:

E^x + E^x/(1 + E^(4*x)) + RootSum[1 + #1^4 & , (x - Log[E^x - #1])/#1^3 & 
]/4
 

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.28, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {2720, 915, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int e^x \tanh ^2(2 x) \, dx\)

\(\Big \downarrow \) 2720

\(\displaystyle \int \frac {\left (1-e^{4 x}\right )^2}{\left (e^{4 x}+1\right )^2}de^x\)

\(\Big \downarrow \) 915

\(\displaystyle \int \left (1-\frac {4 e^{4 x}}{\left (e^{4 x}+1\right )^2}\right )de^x\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\arctan \left (1-\sqrt {2} e^x\right )}{2 \sqrt {2}}-\frac {\arctan \left (\sqrt {2} e^x+1\right )}{2 \sqrt {2}}+e^x+\frac {e^x}{e^{4 x}+1}+\frac {\log \left (-\sqrt {2} e^x+e^{2 x}+1\right )}{4 \sqrt {2}}-\frac {\log \left (\sqrt {2} e^x+e^{2 x}+1\right )}{4 \sqrt {2}}\)

Input:

Int[E^x*Tanh[2*x]^2,x]
 

Output:

E^x + E^x/(1 + E^(4*x)) + ArcTan[1 - Sqrt[2]*E^x]/(2*Sqrt[2]) - ArcTan[1 + 
 Sqrt[2]*E^x]/(2*Sqrt[2]) + Log[1 - Sqrt[2]*E^x + E^(2*x)]/(4*Sqrt[2]) - L 
og[1 + Sqrt[2]*E^x + E^(2*x)]/(4*Sqrt[2])
 

Defintions of rubi rules used

rule 915
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Int[PolynomialDivide[(a + b*x^n)^p, (c + d*x^n)^(-q), x], x] /; FreeQ[{a 
, b, c, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IGtQ[p, 0] && ILtQ[q, 
0] && GeQ[p, -q]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2720
Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Simp[v/D[v, x] 
   Subst[Int[FunctionOfExponentialFunction[u, x]/x, x], x, v], x]] /; Funct 
ionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; FreeQ 
[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x)) 
*(F_)[v_] /; FreeQ[{a, b, c}, x] && InverseFunctionQ[F[x]]]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.60 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.40

method result size
risch \({\mathrm e}^{x}+\frac {{\mathrm e}^{x}}{1+{\mathrm e}^{4 x}}+\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (256 \textit {\_Z}^{4}+1\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{x}-4 \textit {\_R} \right )\right )\) \(35\)

Input:

int(exp(x)*tanh(2*x)^2,x,method=_RETURNVERBOSE)
 

Output:

exp(x)+exp(x)/(1+exp(4*x))+sum(_R*ln(exp(x)-4*_R),_R=RootOf(256*_Z^4+1))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 393 vs. \(2 (62) = 124\).

Time = 0.11 (sec) , antiderivative size = 393, normalized size of antiderivative = 4.47 \[ \int e^x \tanh ^2(2 x) \, dx =\text {Too large to display} \] Input:

integrate(exp(x)*tanh(2*x)^2,x, algorithm="fricas")
 

Output:

1/8*(8*cosh(x)^5 + 80*cosh(x)^3*sinh(x)^2 + 80*cosh(x)^2*sinh(x)^3 + 40*co 
sh(x)*sinh(x)^4 + 8*sinh(x)^5 - 2*(sqrt(2)*cosh(x)^4 + 4*sqrt(2)*cosh(x)^3 
*sinh(x) + 6*sqrt(2)*cosh(x)^2*sinh(x)^2 + 4*sqrt(2)*cosh(x)*sinh(x)^3 + s 
qrt(2)*sinh(x)^4 + sqrt(2))*arctan(sqrt(2)*cosh(x) + sqrt(2)*sinh(x) + 1) 
- 2*(sqrt(2)*cosh(x)^4 + 4*sqrt(2)*cosh(x)^3*sinh(x) + 6*sqrt(2)*cosh(x)^2 
*sinh(x)^2 + 4*sqrt(2)*cosh(x)*sinh(x)^3 + sqrt(2)*sinh(x)^4 + sqrt(2))*ar 
ctan(sqrt(2)*cosh(x) + sqrt(2)*sinh(x) - 1) - (sqrt(2)*cosh(x)^4 + 4*sqrt( 
2)*cosh(x)^3*sinh(x) + 6*sqrt(2)*cosh(x)^2*sinh(x)^2 + 4*sqrt(2)*cosh(x)*s 
inh(x)^3 + sqrt(2)*sinh(x)^4 + sqrt(2))*log((sqrt(2) + 2*cosh(x))/(cosh(x) 
 - sinh(x))) + (sqrt(2)*cosh(x)^4 + 4*sqrt(2)*cosh(x)^3*sinh(x) + 6*sqrt(2 
)*cosh(x)^2*sinh(x)^2 + 4*sqrt(2)*cosh(x)*sinh(x)^3 + sqrt(2)*sinh(x)^4 + 
sqrt(2))*log(-(sqrt(2) - 2*cosh(x))/(cosh(x) - sinh(x))) + 8*(5*cosh(x)^4 
+ 2)*sinh(x) + 16*cosh(x))/(cosh(x)^4 + 4*cosh(x)^3*sinh(x) + 6*cosh(x)^2* 
sinh(x)^2 + 4*cosh(x)*sinh(x)^3 + sinh(x)^4 + 1)
 

Sympy [F]

\[ \int e^x \tanh ^2(2 x) \, dx=\int e^{x} \tanh ^{2}{\left (2 x \right )}\, dx \] Input:

integrate(exp(x)*tanh(2*x)**2,x)
 

Output:

Integral(exp(x)*tanh(2*x)**2, x)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.01 \[ \int e^x \tanh ^2(2 x) \, dx=-\frac {1}{4} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, e^{x}\right )}\right ) - \frac {1}{4} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, e^{x}\right )}\right ) - \frac {1}{8} \, \sqrt {2} \log \left (\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) + \frac {1}{8} \, \sqrt {2} \log \left (-\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) + \frac {e^{x}}{e^{\left (4 \, x\right )} + 1} + e^{x} \] Input:

integrate(exp(x)*tanh(2*x)^2,x, algorithm="maxima")
 

Output:

-1/4*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*e^x)) - 1/4*sqrt(2)*arctan(-1 
/2*sqrt(2)*(sqrt(2) - 2*e^x)) - 1/8*sqrt(2)*log(sqrt(2)*e^x + e^(2*x) + 1) 
 + 1/8*sqrt(2)*log(-sqrt(2)*e^x + e^(2*x) + 1) + e^x/(e^(4*x) + 1) + e^x
 

Giac [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.01 \[ \int e^x \tanh ^2(2 x) \, dx=-\frac {1}{4} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, e^{x}\right )}\right ) - \frac {1}{4} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, e^{x}\right )}\right ) - \frac {1}{8} \, \sqrt {2} \log \left (\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) + \frac {1}{8} \, \sqrt {2} \log \left (-\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) + \frac {e^{x}}{e^{\left (4 \, x\right )} + 1} + e^{x} \] Input:

integrate(exp(x)*tanh(2*x)^2,x, algorithm="giac")
 

Output:

-1/4*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*e^x)) - 1/4*sqrt(2)*arctan(-1 
/2*sqrt(2)*(sqrt(2) - 2*e^x)) - 1/8*sqrt(2)*log(sqrt(2)*e^x + e^(2*x) + 1) 
 + 1/8*sqrt(2)*log(-sqrt(2)*e^x + e^(2*x) + 1) + e^x/(e^(4*x) + 1) + e^x
 

Mupad [B] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.98 \[ \int e^x \tanh ^2(2 x) \, dx={\mathrm {e}}^x+\frac {{\mathrm {e}}^x}{{\mathrm {e}}^{4\,x}+1}-\frac {\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,\left ({\mathrm {e}}^x-\frac {\sqrt {2}}{2}\right )\right )}{4}-\frac {\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,\left ({\mathrm {e}}^x+\frac {\sqrt {2}}{2}\right )\right )}{4}+\frac {\sqrt {2}\,\ln \left ({\left ({\mathrm {e}}^x-\frac {\sqrt {2}}{2}\right )}^2+\frac {1}{2}\right )}{8}-\frac {\sqrt {2}\,\ln \left ({\left ({\mathrm {e}}^x+\frac {\sqrt {2}}{2}\right )}^2+\frac {1}{2}\right )}{8} \] Input:

int(tanh(2*x)^2*exp(x),x)
 

Output:

exp(x) + exp(x)/(exp(4*x) + 1) - (2^(1/2)*atan(2^(1/2)*(exp(x) - 2^(1/2)/2 
)))/4 - (2^(1/2)*atan(2^(1/2)*(exp(x) + 2^(1/2)/2)))/4 + (2^(1/2)*log((exp 
(x) - 2^(1/2)/2)^2 + 1/2))/8 - (2^(1/2)*log((exp(x) + 2^(1/2)/2)^2 + 1/2)) 
/8
 

Reduce [B] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 193, normalized size of antiderivative = 2.19 \[ \int e^x \tanh ^2(2 x) \, dx=\frac {-2 e^{4 x} \sqrt {2}\, \mathit {atan} \left (\frac {2 e^{x}-\sqrt {2}}{\sqrt {2}}\right )-2 \sqrt {2}\, \mathit {atan} \left (\frac {2 e^{x}-\sqrt {2}}{\sqrt {2}}\right )-2 e^{4 x} \sqrt {2}\, \mathit {atan} \left (\frac {2 e^{x}+\sqrt {2}}{\sqrt {2}}\right )-2 \sqrt {2}\, \mathit {atan} \left (\frac {2 e^{x}+\sqrt {2}}{\sqrt {2}}\right )+8 e^{5 x}+e^{4 x} \sqrt {2}\, \mathrm {log}\left (e^{2 x}-e^{x} \sqrt {2}+1\right )-e^{4 x} \sqrt {2}\, \mathrm {log}\left (e^{2 x}+e^{x} \sqrt {2}+1\right )+16 e^{x}+\sqrt {2}\, \mathrm {log}\left (e^{2 x}-e^{x} \sqrt {2}+1\right )-\sqrt {2}\, \mathrm {log}\left (e^{2 x}+e^{x} \sqrt {2}+1\right )}{8 e^{4 x}+8} \] Input:

int(exp(x)*tanh(2*x)^2,x)
 

Output:

( - 2*e**(4*x)*sqrt(2)*atan((2*e**x - sqrt(2))/sqrt(2)) - 2*sqrt(2)*atan(( 
2*e**x - sqrt(2))/sqrt(2)) - 2*e**(4*x)*sqrt(2)*atan((2*e**x + sqrt(2))/sq 
rt(2)) - 2*sqrt(2)*atan((2*e**x + sqrt(2))/sqrt(2)) + 8*e**(5*x) + e**(4*x 
)*sqrt(2)*log(e**(2*x) - e**x*sqrt(2) + 1) - e**(4*x)*sqrt(2)*log(e**(2*x) 
 + e**x*sqrt(2) + 1) + 16*e**x + sqrt(2)*log(e**(2*x) - e**x*sqrt(2) + 1) 
- sqrt(2)*log(e**(2*x) + e**x*sqrt(2) + 1))/(8*(e**(4*x) + 1))