\(\int \frac {1}{(1+\tanh (x))^{5/2}} \, dx\) [56]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 8, antiderivative size = 61 \[ \int \frac {1}{(1+\tanh (x))^{5/2}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {1+\tanh (x)}}{\sqrt {2}}\right )}{4 \sqrt {2}}-\frac {1}{5 (1+\tanh (x))^{5/2}}-\frac {1}{6 (1+\tanh (x))^{3/2}}-\frac {1}{4 \sqrt {1+\tanh (x)}} \] Output:

1/8*2^(1/2)*arctanh(1/2*(1+tanh(x))^(1/2)*2^(1/2))-1/5/(1+tanh(x))^(5/2)-1 
/6/(1+tanh(x))^(3/2)-1/4/(1+tanh(x))^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.24 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.46 \[ \int \frac {1}{(1+\tanh (x))^{5/2}} \, dx=-\frac {\operatorname {Hypergeometric2F1}\left (-\frac {5}{2},1,-\frac {3}{2},\frac {1}{2} (1+\tanh (x))\right )}{5 (1+\tanh (x))^{5/2}} \] Input:

Integrate[(1 + Tanh[x])^(-5/2),x]
 

Output:

-1/5*Hypergeometric2F1[-5/2, 1, -3/2, (1 + Tanh[x])/2]/(1 + Tanh[x])^(5/2)
 

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.08, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.125, Rules used = {3042, 3960, 3042, 3960, 3042, 3960, 3042, 3961, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(\tanh (x)+1)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(1-i \tan (i x))^{5/2}}dx\)

\(\Big \downarrow \) 3960

\(\displaystyle \frac {1}{2} \int \frac {1}{(\tanh (x)+1)^{3/2}}dx-\frac {1}{5 (\tanh (x)+1)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {1}{5 (\tanh (x)+1)^{5/2}}+\frac {1}{2} \int \frac {1}{(1-i \tan (i x))^{3/2}}dx\)

\(\Big \downarrow \) 3960

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \int \frac {1}{\sqrt {\tanh (x)+1}}dx-\frac {1}{3 (\tanh (x)+1)^{3/2}}\right )-\frac {1}{5 (\tanh (x)+1)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {1}{5 (\tanh (x)+1)^{5/2}}+\frac {1}{2} \left (-\frac {1}{3 (\tanh (x)+1)^{3/2}}+\frac {1}{2} \int \frac {1}{\sqrt {1-i \tan (i x)}}dx\right )\)

\(\Big \downarrow \) 3960

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (\frac {1}{2} \int \sqrt {\tanh (x)+1}dx-\frac {1}{\sqrt {\tanh (x)+1}}\right )-\frac {1}{3 (\tanh (x)+1)^{3/2}}\right )-\frac {1}{5 (\tanh (x)+1)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {1}{5 (\tanh (x)+1)^{5/2}}+\frac {1}{2} \left (-\frac {1}{3 (\tanh (x)+1)^{3/2}}+\frac {1}{2} \left (-\frac {1}{\sqrt {\tanh (x)+1}}+\frac {1}{2} \int \sqrt {1-i \tan (i x)}dx\right )\right )\)

\(\Big \downarrow \) 3961

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (\int \frac {1}{1-\tanh (x)}d\sqrt {\tanh (x)+1}-\frac {1}{\sqrt {\tanh (x)+1}}\right )-\frac {1}{3 (\tanh (x)+1)^{3/2}}\right )-\frac {1}{5 (\tanh (x)+1)^{5/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (\frac {\text {arctanh}\left (\frac {\sqrt {\tanh (x)+1}}{\sqrt {2}}\right )}{\sqrt {2}}-\frac {1}{\sqrt {\tanh (x)+1}}\right )-\frac {1}{3 (\tanh (x)+1)^{3/2}}\right )-\frac {1}{5 (\tanh (x)+1)^{5/2}}\)

Input:

Int[(1 + Tanh[x])^(-5/2),x]
 

Output:

-1/5*1/(1 + Tanh[x])^(5/2) + (-1/3*1/(1 + Tanh[x])^(3/2) + (ArcTanh[Sqrt[1 
 + Tanh[x]]/Sqrt[2]]/Sqrt[2] - 1/Sqrt[1 + Tanh[x]])/2)/2
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3960
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[a*((a + 
b*Tan[c + d*x])^n/(2*b*d*n)), x] + Simp[1/(2*a)   Int[(a + b*Tan[c + d*x])^ 
(n + 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] && LtQ[n, 0]
 

rule 3961
Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(2*a - x^2), x], x, Sqrt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a 
, b, c, d}, x] && EqQ[a^2 + b^2, 0]
 
Maple [A] (verified)

Time = 0.22 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.70

method result size
derivativedivides \(\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {1+\tanh \left (x \right )}\, \sqrt {2}}{2}\right )}{8}-\frac {1}{5 \left (1+\tanh \left (x \right )\right )^{\frac {5}{2}}}-\frac {1}{6 \left (1+\tanh \left (x \right )\right )^{\frac {3}{2}}}-\frac {1}{4 \sqrt {1+\tanh \left (x \right )}}\) \(43\)
default \(\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {1+\tanh \left (x \right )}\, \sqrt {2}}{2}\right )}{8}-\frac {1}{5 \left (1+\tanh \left (x \right )\right )^{\frac {5}{2}}}-\frac {1}{6 \left (1+\tanh \left (x \right )\right )^{\frac {3}{2}}}-\frac {1}{4 \sqrt {1+\tanh \left (x \right )}}\) \(43\)

Input:

int(1/(1+tanh(x))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/8*2^(1/2)*arctanh(1/2*(1+tanh(x))^(1/2)*2^(1/2))-1/5/(1+tanh(x))^(5/2)-1 
/6/(1+tanh(x))^(3/2)-1/4/(1+tanh(x))^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 338 vs. \(2 (42) = 84\).

Time = 0.10 (sec) , antiderivative size = 338, normalized size of antiderivative = 5.54 \[ \int \frac {1}{(1+\tanh (x))^{5/2}} \, dx=\frac {15 \, {\left (\sqrt {2} \cosh \left (x\right )^{5} + 5 \, \sqrt {2} \cosh \left (x\right )^{4} \sinh \left (x\right ) + 10 \, \sqrt {2} \cosh \left (x\right )^{3} \sinh \left (x\right )^{2} + 10 \, \sqrt {2} \cosh \left (x\right )^{2} \sinh \left (x\right )^{3} + 5 \, \sqrt {2} \cosh \left (x\right ) \sinh \left (x\right )^{4} + \sqrt {2} \sinh \left (x\right )^{5}\right )} \log \left (-2 \, \cosh \left (x\right )^{2} - 4 \, \cosh \left (x\right ) \sinh \left (x\right ) - 2 \, \sinh \left (x\right )^{2} - \frac {\sqrt {2} {\left (\sqrt {2} \cosh \left (x\right )^{3} + 3 \, \sqrt {2} \cosh \left (x\right ) \sinh \left (x\right )^{2} + \sqrt {2} \sinh \left (x\right )^{3} + {\left (3 \, \sqrt {2} \cosh \left (x\right )^{2} + \sqrt {2}\right )} \sinh \left (x\right ) + \sqrt {2} \cosh \left (x\right )\right )}}{\sqrt {\cosh \left (x\right )^{2} + 2 \, \cosh \left (x\right ) \sinh \left (x\right ) + \sinh \left (x\right )^{2} + 1}} - 1\right ) - \frac {2 \, \sqrt {2} {\left (23 \, \cosh \left (x\right )^{6} + 138 \, \cosh \left (x\right ) \sinh \left (x\right )^{5} + 23 \, \sinh \left (x\right )^{6} + {\left (345 \, \cosh \left (x\right )^{2} + 34\right )} \sinh \left (x\right )^{4} + 34 \, \cosh \left (x\right )^{4} + 4 \, {\left (115 \, \cosh \left (x\right )^{3} + 34 \, \cosh \left (x\right )\right )} \sinh \left (x\right )^{3} + {\left (345 \, \cosh \left (x\right )^{4} + 204 \, \cosh \left (x\right )^{2} + 14\right )} \sinh \left (x\right )^{2} + 14 \, \cosh \left (x\right )^{2} + 2 \, {\left (69 \, \cosh \left (x\right )^{5} + 68 \, \cosh \left (x\right )^{3} + 14 \, \cosh \left (x\right )\right )} \sinh \left (x\right ) + 3\right )}}{\sqrt {\cosh \left (x\right )^{2} + 2 \, \cosh \left (x\right ) \sinh \left (x\right ) + \sinh \left (x\right )^{2} + 1}}}{240 \, {\left (\cosh \left (x\right )^{5} + 5 \, \cosh \left (x\right )^{4} \sinh \left (x\right ) + 10 \, \cosh \left (x\right )^{3} \sinh \left (x\right )^{2} + 10 \, \cosh \left (x\right )^{2} \sinh \left (x\right )^{3} + 5 \, \cosh \left (x\right ) \sinh \left (x\right )^{4} + \sinh \left (x\right )^{5}\right )}} \] Input:

integrate(1/(1+tanh(x))^(5/2),x, algorithm="fricas")
 

Output:

1/240*(15*(sqrt(2)*cosh(x)^5 + 5*sqrt(2)*cosh(x)^4*sinh(x) + 10*sqrt(2)*co 
sh(x)^3*sinh(x)^2 + 10*sqrt(2)*cosh(x)^2*sinh(x)^3 + 5*sqrt(2)*cosh(x)*sin 
h(x)^4 + sqrt(2)*sinh(x)^5)*log(-2*cosh(x)^2 - 4*cosh(x)*sinh(x) - 2*sinh( 
x)^2 - sqrt(2)*(sqrt(2)*cosh(x)^3 + 3*sqrt(2)*cosh(x)*sinh(x)^2 + sqrt(2)* 
sinh(x)^3 + (3*sqrt(2)*cosh(x)^2 + sqrt(2))*sinh(x) + sqrt(2)*cosh(x))/sqr 
t(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1) - 1) - 2*sqrt(2)*(23*cosh 
(x)^6 + 138*cosh(x)*sinh(x)^5 + 23*sinh(x)^6 + (345*cosh(x)^2 + 34)*sinh(x 
)^4 + 34*cosh(x)^4 + 4*(115*cosh(x)^3 + 34*cosh(x))*sinh(x)^3 + (345*cosh( 
x)^4 + 204*cosh(x)^2 + 14)*sinh(x)^2 + 14*cosh(x)^2 + 2*(69*cosh(x)^5 + 68 
*cosh(x)^3 + 14*cosh(x))*sinh(x) + 3)/sqrt(cosh(x)^2 + 2*cosh(x)*sinh(x) + 
 sinh(x)^2 + 1))/(cosh(x)^5 + 5*cosh(x)^4*sinh(x) + 10*cosh(x)^3*sinh(x)^2 
 + 10*cosh(x)^2*sinh(x)^3 + 5*cosh(x)*sinh(x)^4 + sinh(x)^5)
 

Sympy [F]

\[ \int \frac {1}{(1+\tanh (x))^{5/2}} \, dx=\int \frac {1}{\left (\tanh {\left (x \right )} + 1\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(1/(1+tanh(x))**(5/2),x)
 

Output:

Integral((tanh(x) + 1)**(-5/2), x)
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.30 \[ \int \frac {1}{(1+\tanh (x))^{5/2}} \, dx=-\frac {1}{120} \, \sqrt {2} {\left (\frac {5}{e^{\left (-2 \, x\right )} + 1} + \frac {15}{{\left (e^{\left (-2 \, x\right )} + 1\right )}^{2}} + 3\right )} {\left (e^{\left (-2 \, x\right )} + 1\right )}^{\frac {5}{2}} - \frac {1}{16} \, \sqrt {2} \log \left (-\frac {\sqrt {2} - \frac {\sqrt {2}}{\sqrt {e^{\left (-2 \, x\right )} + 1}}}{\sqrt {2} + \frac {\sqrt {2}}{\sqrt {e^{\left (-2 \, x\right )} + 1}}}\right ) \] Input:

integrate(1/(1+tanh(x))^(5/2),x, algorithm="maxima")
 

Output:

-1/120*sqrt(2)*(5/(e^(-2*x) + 1) + 15/(e^(-2*x) + 1)^2 + 3)*(e^(-2*x) + 1) 
^(5/2) - 1/16*sqrt(2)*log(-(sqrt(2) - sqrt(2)/sqrt(e^(-2*x) + 1))/(sqrt(2) 
 + sqrt(2)/sqrt(e^(-2*x) + 1)))
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 139 vs. \(2 (42) = 84\).

Time = 0.13 (sec) , antiderivative size = 139, normalized size of antiderivative = 2.28 \[ \int \frac {1}{(1+\tanh (x))^{5/2}} \, dx=-\frac {1}{240} \, \sqrt {2} {\left (\frac {2 \, {\left (45 \, {\left (\sqrt {e^{\left (4 \, x\right )} + e^{\left (2 \, x\right )}} - e^{\left (2 \, x\right )}\right )}^{4} - 45 \, {\left (\sqrt {e^{\left (4 \, x\right )} + e^{\left (2 \, x\right )}} - e^{\left (2 \, x\right )}\right )}^{3} + 35 \, {\left (\sqrt {e^{\left (4 \, x\right )} + e^{\left (2 \, x\right )}} - e^{\left (2 \, x\right )}\right )}^{2} - 15 \, \sqrt {e^{\left (4 \, x\right )} + e^{\left (2 \, x\right )}} + 15 \, e^{\left (2 \, x\right )} + 3\right )}}{{\left (\sqrt {e^{\left (4 \, x\right )} + e^{\left (2 \, x\right )}} - e^{\left (2 \, x\right )}\right )}^{5}} + 15 \, \log \left (-2 \, \sqrt {e^{\left (4 \, x\right )} + e^{\left (2 \, x\right )}} + 2 \, e^{\left (2 \, x\right )} + 1\right )\right )} \] Input:

integrate(1/(1+tanh(x))^(5/2),x, algorithm="giac")
 

Output:

-1/240*sqrt(2)*(2*(45*(sqrt(e^(4*x) + e^(2*x)) - e^(2*x))^4 - 45*(sqrt(e^( 
4*x) + e^(2*x)) - e^(2*x))^3 + 35*(sqrt(e^(4*x) + e^(2*x)) - e^(2*x))^2 - 
15*sqrt(e^(4*x) + e^(2*x)) + 15*e^(2*x) + 3)/(sqrt(e^(4*x) + e^(2*x)) - e^ 
(2*x))^5 + 15*log(-2*sqrt(e^(4*x) + e^(2*x)) + 2*e^(2*x) + 1))
 

Mupad [B] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.66 \[ \int \frac {1}{(1+\tanh (x))^{5/2}} \, dx=\frac {\sqrt {2}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {\mathrm {tanh}\left (x\right )+1}}{2}\right )}{8}-\frac {\frac {\mathrm {tanh}\left (x\right )}{6}+\frac {{\left (\mathrm {tanh}\left (x\right )+1\right )}^2}{4}+\frac {11}{30}}{{\left (\mathrm {tanh}\left (x\right )+1\right )}^{5/2}} \] Input:

int(1/(tanh(x) + 1)^(5/2),x)
 

Output:

(2^(1/2)*atanh((2^(1/2)*(tanh(x) + 1)^(1/2))/2))/8 - (tanh(x)/6 + (tanh(x) 
 + 1)^2/4 + 11/30)/(tanh(x) + 1)^(5/2)
 

Reduce [F]

\[ \int \frac {1}{(1+\tanh (x))^{5/2}} \, dx=\frac {-2 \sqrt {\tanh \left (x \right )+1}+3 \left (\int \frac {\sqrt {\tanh \left (x \right )+1}\, \tanh \left (x \right )^{2}}{\tanh \left (x \right )^{3}+3 \tanh \left (x \right )^{2}+3 \tanh \left (x \right )+1}d x \right ) \tanh \left (x \right )^{2}+6 \left (\int \frac {\sqrt {\tanh \left (x \right )+1}\, \tanh \left (x \right )^{2}}{\tanh \left (x \right )^{3}+3 \tanh \left (x \right )^{2}+3 \tanh \left (x \right )+1}d x \right ) \tanh \left (x \right )+3 \left (\int \frac {\sqrt {\tanh \left (x \right )+1}\, \tanh \left (x \right )^{2}}{\tanh \left (x \right )^{3}+3 \tanh \left (x \right )^{2}+3 \tanh \left (x \right )+1}d x \right )}{3 \tanh \left (x \right )^{2}+6 \tanh \left (x \right )+3} \] Input:

int(1/(1+tanh(x))^(5/2),x)
 

Output:

( - 2*sqrt(tanh(x) + 1) + 3*int((sqrt(tanh(x) + 1)*tanh(x)**2)/(tanh(x)**3 
 + 3*tanh(x)**2 + 3*tanh(x) + 1),x)*tanh(x)**2 + 6*int((sqrt(tanh(x) + 1)* 
tanh(x)**2)/(tanh(x)**3 + 3*tanh(x)**2 + 3*tanh(x) + 1),x)*tanh(x) + 3*int 
((sqrt(tanh(x) + 1)*tanh(x)**2)/(tanh(x)**3 + 3*tanh(x)**2 + 3*tanh(x) + 1 
),x))/(3*(tanh(x)**2 + 2*tanh(x) + 1))