\(\int \frac {\cosh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx\) [105]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 120 \[ \int \frac {\cosh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {\left (3 a^2+10 a b+15 b^2\right ) x}{8 (a+b)^3}+\frac {b^{5/2} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} (a+b)^3 d}+\frac {(3 a+7 b) \cosh (c+d x) \sinh (c+d x)}{8 (a+b)^2 d}+\frac {\cosh ^3(c+d x) \sinh (c+d x)}{4 (a+b) d} \] Output:

1/8*(3*a^2+10*a*b+15*b^2)*x/(a+b)^3+b^(5/2)*arctan(b^(1/2)*tanh(d*x+c)/a^( 
1/2))/a^(1/2)/(a+b)^3/d+1/8*(3*a+7*b)*cosh(d*x+c)*sinh(d*x+c)/(a+b)^2/d+1/ 
4*cosh(d*x+c)^3*sinh(d*x+c)/(a+b)/d
 

Mathematica [A] (verified)

Time = 0.58 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.96 \[ \int \frac {\cosh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {\left (3 a^2+10 a b+15 b^2\right ) (c+d x)}{8 (a+b)^3 d}+\frac {b^{5/2} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} (a+b)^3 d}+\frac {(a+2 b) \sinh (2 (c+d x))}{4 (a+b)^2 d}+\frac {\sinh (4 (c+d x))}{32 (a+b) d} \] Input:

Integrate[Cosh[c + d*x]^4/(a + b*Tanh[c + d*x]^2),x]
 

Output:

((3*a^2 + 10*a*b + 15*b^2)*(c + d*x))/(8*(a + b)^3*d) + (b^(5/2)*ArcTan[(S 
qrt[b]*Tanh[c + d*x])/Sqrt[a]])/(Sqrt[a]*(a + b)^3*d) + ((a + 2*b)*Sinh[2* 
(c + d*x)])/(4*(a + b)^2*d) + Sinh[4*(c + d*x)]/(32*(a + b)*d)
 

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.28, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3042, 4158, 316, 402, 397, 218, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cosh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sec (i c+i d x)^4 \left (a-b \tan (i c+i d x)^2\right )}dx\)

\(\Big \downarrow \) 4158

\(\displaystyle \frac {\int \frac {1}{\left (1-\tanh ^2(c+d x)\right )^3 \left (b \tanh ^2(c+d x)+a\right )}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 316

\(\displaystyle \frac {\frac {\int \frac {3 b \tanh ^2(c+d x)+3 a+4 b}{\left (1-\tanh ^2(c+d x)\right )^2 \left (b \tanh ^2(c+d x)+a\right )}d\tanh (c+d x)}{4 (a+b)}+\frac {\tanh (c+d x)}{4 (a+b) \left (1-\tanh ^2(c+d x)\right )^2}}{d}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\frac {\int \frac {3 a^2+7 b a+8 b^2+b (3 a+7 b) \tanh ^2(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^2(c+d x)+a\right )}d\tanh (c+d x)}{2 (a+b)}+\frac {(3 a+7 b) \tanh (c+d x)}{2 (a+b) \left (1-\tanh ^2(c+d x)\right )}}{4 (a+b)}+\frac {\tanh (c+d x)}{4 (a+b) \left (1-\tanh ^2(c+d x)\right )^2}}{d}\)

\(\Big \downarrow \) 397

\(\displaystyle \frac {\frac {\frac {\frac {\left (3 a^2+10 a b+15 b^2\right ) \int \frac {1}{1-\tanh ^2(c+d x)}d\tanh (c+d x)}{a+b}+\frac {8 b^3 \int \frac {1}{b \tanh ^2(c+d x)+a}d\tanh (c+d x)}{a+b}}{2 (a+b)}+\frac {(3 a+7 b) \tanh (c+d x)}{2 (a+b) \left (1-\tanh ^2(c+d x)\right )}}{4 (a+b)}+\frac {\tanh (c+d x)}{4 (a+b) \left (1-\tanh ^2(c+d x)\right )^2}}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\frac {\frac {\left (3 a^2+10 a b+15 b^2\right ) \int \frac {1}{1-\tanh ^2(c+d x)}d\tanh (c+d x)}{a+b}+\frac {8 b^{5/2} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} (a+b)}}{2 (a+b)}+\frac {(3 a+7 b) \tanh (c+d x)}{2 (a+b) \left (1-\tanh ^2(c+d x)\right )}}{4 (a+b)}+\frac {\tanh (c+d x)}{4 (a+b) \left (1-\tanh ^2(c+d x)\right )^2}}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\frac {\frac {\left (3 a^2+10 a b+15 b^2\right ) \text {arctanh}(\tanh (c+d x))}{a+b}+\frac {8 b^{5/2} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} (a+b)}}{2 (a+b)}+\frac {(3 a+7 b) \tanh (c+d x)}{2 (a+b) \left (1-\tanh ^2(c+d x)\right )}}{4 (a+b)}+\frac {\tanh (c+d x)}{4 (a+b) \left (1-\tanh ^2(c+d x)\right )^2}}{d}\)

Input:

Int[Cosh[c + d*x]^4/(a + b*Tanh[c + d*x]^2),x]
 

Output:

(Tanh[c + d*x]/(4*(a + b)*(1 - Tanh[c + d*x]^2)^2) + (((8*b^(5/2)*ArcTan[( 
Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(Sqrt[a]*(a + b)) + ((3*a^2 + 10*a*b + 15 
*b^2)*ArcTanh[Tanh[c + d*x]])/(a + b))/(2*(a + b)) + ((3*a + 7*b)*Tanh[c + 
 d*x])/(2*(a + b)*(1 - Tanh[c + d*x]^2)))/(4*(a + b)))/d
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 316
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[1/(2*a*(p + 1)*(b*c - a*d))   Int[(a + b*x^2)^(p + 1)*(c + d*x 
^2)^q*Simp[b*c + 2*(p + 1)*(b*c - a*d) + d*b*(2*(p + q + 2) + 1)*x^2, x], x 
], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  ! 
( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, c, d, 2, 
 p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4158
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_ 
)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/(c^(m - 1)*f)   Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x)^n)^ 
p, x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && I 
ntegerQ[m/2] && (IntegersQ[n, p] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] 
 || EqQ[n^2, 16])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(272\) vs. \(2(106)=212\).

Time = 21.67 (sec) , antiderivative size = 273, normalized size of antiderivative = 2.28

method result size
risch \(\frac {3 x \,a^{2}}{8 \left (a +b \right )^{3}}+\frac {5 x a b}{4 \left (a +b \right )^{3}}+\frac {15 x \,b^{2}}{8 \left (a +b \right )^{3}}+\frac {{\mathrm e}^{4 d x +4 c}}{64 \left (a +b \right ) d}+\frac {a \,{\mathrm e}^{2 d x +2 c}}{8 \left (a +b \right )^{2} d}+\frac {{\mathrm e}^{2 d x +2 c} b}{4 \left (a +b \right )^{2} d}-\frac {{\mathrm e}^{-2 d x -2 c} a}{8 \left (a^{2}+2 a b +b^{2}\right ) d}-\frac {{\mathrm e}^{-2 d x -2 c} b}{4 \left (a^{2}+2 a b +b^{2}\right ) d}-\frac {{\mathrm e}^{-4 d x -4 c}}{64 \left (a +b \right ) d}+\frac {\sqrt {-a b}\, b^{2} \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {-a b}+a -b}{a +b}\right )}{2 a \left (a +b \right )^{3} d}-\frac {\sqrt {-a b}\, b^{2} \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}-a +b}{a +b}\right )}{2 a \left (a +b \right )^{3} d}\) \(273\)
derivativedivides \(\frac {-\frac {2 b^{3} a \left (\frac {\left (a +\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (-a +\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{\left (a +b \right )^{3}}-\frac {1}{2 \left (2 b +2 a \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}+\frac {2}{\left (4 a +4 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {-5 a -9 b}{8 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {7 a +11 b}{8 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {\left (3 a^{2}+10 a b +15 b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 \left (a +b \right )^{3}}+\frac {1}{2 \left (2 b +2 a \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}+\frac {2}{\left (4 a +4 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {-7 a -11 b}{8 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {-5 a -9 b}{8 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-3 a^{2}-10 a b -15 b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 \left (a +b \right )^{3}}}{d}\) \(438\)
default \(\frac {-\frac {2 b^{3} a \left (\frac {\left (a +\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (-a +\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{\left (a +b \right )^{3}}-\frac {1}{2 \left (2 b +2 a \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}+\frac {2}{\left (4 a +4 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {-5 a -9 b}{8 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {7 a +11 b}{8 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {\left (3 a^{2}+10 a b +15 b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 \left (a +b \right )^{3}}+\frac {1}{2 \left (2 b +2 a \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}+\frac {2}{\left (4 a +4 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {-7 a -11 b}{8 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {-5 a -9 b}{8 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-3 a^{2}-10 a b -15 b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 \left (a +b \right )^{3}}}{d}\) \(438\)

Input:

int(cosh(d*x+c)^4/(a+tanh(d*x+c)^2*b),x,method=_RETURNVERBOSE)
 

Output:

3/8*x/(a+b)^3*a^2+5/4*x/(a+b)^3*a*b+15/8*x/(a+b)^3*b^2+1/64/(a+b)/d*exp(4* 
d*x+4*c)+1/8*a/(a+b)^2/d*exp(2*d*x+2*c)+1/4/(a+b)^2/d*exp(2*d*x+2*c)*b-1/8 
/(a^2+2*a*b+b^2)/d*exp(-2*d*x-2*c)*a-1/4/(a^2+2*a*b+b^2)/d*exp(-2*d*x-2*c) 
*b-1/64/(a+b)/d*exp(-4*d*x-4*c)+1/2/a*(-a*b)^(1/2)*b^2/(a+b)^3/d*ln(exp(2* 
d*x+2*c)+(2*(-a*b)^(1/2)+a-b)/(a+b))-1/2/a*(-a*b)^(1/2)*b^2/(a+b)^3/d*ln(e 
xp(2*d*x+2*c)-(2*(-a*b)^(1/2)-a+b)/(a+b))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 929 vs. \(2 (106) = 212\).

Time = 0.13 (sec) , antiderivative size = 2180, normalized size of antiderivative = 18.17 \[ \int \frac {\cosh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate(cosh(d*x+c)^4/(a+b*tanh(d*x+c)^2),x, algorithm="fricas")
 

Output:

[1/64*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^8 + 8*(a^2 + 2*a*b + b^2)*cosh(d* 
x + c)*sinh(d*x + c)^7 + (a^2 + 2*a*b + b^2)*sinh(d*x + c)^8 + 8*(3*a^2 + 
10*a*b + 15*b^2)*d*x*cosh(d*x + c)^4 + 8*(a^2 + 3*a*b + 2*b^2)*cosh(d*x + 
c)^6 + 4*(7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 + 2*a^2 + 6*a*b + 4*b^2)*s 
inh(d*x + c)^6 + 8*(7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^3 + 6*(a^2 + 3*a*b 
 + 2*b^2)*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(35*(a^2 + 2*a*b + b^2)*cosh( 
d*x + c)^4 + 4*(3*a^2 + 10*a*b + 15*b^2)*d*x + 60*(a^2 + 3*a*b + 2*b^2)*co 
sh(d*x + c)^2)*sinh(d*x + c)^4 + 8*(7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^5 
+ 4*(3*a^2 + 10*a*b + 15*b^2)*d*x*cosh(d*x + c) + 20*(a^2 + 3*a*b + 2*b^2) 
*cosh(d*x + c)^3)*sinh(d*x + c)^3 - 8*(a^2 + 3*a*b + 2*b^2)*cosh(d*x + c)^ 
2 + 4*(7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^6 + 12*(3*a^2 + 10*a*b + 15*b^2 
)*d*x*cosh(d*x + c)^2 + 30*(a^2 + 3*a*b + 2*b^2)*cosh(d*x + c)^4 - 2*a^2 - 
 6*a*b - 4*b^2)*sinh(d*x + c)^2 + 32*(b^2*cosh(d*x + c)^4 + 4*b^2*cosh(d*x 
 + c)^3*sinh(d*x + c) + 6*b^2*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*b^2*cosh 
(d*x + c)*sinh(d*x + c)^3 + b^2*sinh(d*x + c)^4)*sqrt(-b/a)*log(((a^2 + 2* 
a*b + b^2)*cosh(d*x + c)^4 + 4*(a^2 + 2*a*b + b^2)*cosh(d*x + c)*sinh(d*x 
+ c)^3 + (a^2 + 2*a*b + b^2)*sinh(d*x + c)^4 + 2*(a^2 - b^2)*cosh(d*x + c) 
^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 + a^2 - b^2)*sinh(d*x + c)^2 
 + a^2 - 6*a*b + b^2 + 4*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^3 + (a^2 - b^2 
)*cosh(d*x + c))*sinh(d*x + c) + 4*((a^2 + a*b)*cosh(d*x + c)^2 + 2*(a^...
 

Sympy [F]

\[ \int \frac {\cosh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\int \frac {\cosh ^{4}{\left (c + d x \right )}}{a + b \tanh ^{2}{\left (c + d x \right )}}\, dx \] Input:

integrate(cosh(d*x+c)**4/(a+b*tanh(d*x+c)**2),x)
 

Output:

Integral(cosh(c + d*x)**4/(a + b*tanh(c + d*x)**2), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 514 vs. \(2 (106) = 212\).

Time = 0.18 (sec) , antiderivative size = 514, normalized size of antiderivative = 4.28 \[ \int \frac {\cosh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=-\frac {{\left (a b - b^{2}\right )} {\left (d x + c\right )}}{2 \, {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} d} + \frac {{\left (8 \, b e^{\left (-2 \, d x - 2 \, c\right )} + a + b\right )} e^{\left (4 \, d x + 4 \, c\right )}}{64 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} d} + \frac {b \log \left ({\left (a + b\right )} e^{\left (4 \, d x + 4 \, c\right )} + 2 \, {\left (a - b\right )} e^{\left (2 \, d x + 2 \, c\right )} + a + b\right )}{4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} d} - \frac {b \log \left (2 \, {\left (a - b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a + b\right )} e^{\left (-4 \, d x - 4 \, c\right )} + a + b\right )}{4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} d} - \frac {{\left (a b - b^{2}\right )} \arctan \left (\frac {{\left (a + b\right )} e^{\left (2 \, d x + 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {a b} d} - \frac {{\left (a^{2} b - 6 \, a b^{2} + b^{3}\right )} \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{8 \, {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} \sqrt {a b} d} + \frac {{\left (a b - b^{2}\right )} \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {a b} d} - \frac {3 \, b \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{8 \, \sqrt {a b} {\left (a + b\right )} d} - \frac {8 \, b e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a + b\right )} e^{\left (-4 \, d x - 4 \, c\right )}}{64 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} d} + \frac {3 \, {\left (d x + c\right )}}{8 \, {\left (a + b\right )} d} + \frac {e^{\left (2 \, d x + 2 \, c\right )}}{8 \, {\left (a + b\right )} d} - \frac {e^{\left (-2 \, d x - 2 \, c\right )}}{8 \, {\left (a + b\right )} d} \] Input:

integrate(cosh(d*x+c)^4/(a+b*tanh(d*x+c)^2),x, algorithm="maxima")
 

Output:

-1/2*(a*b - b^2)*(d*x + c)/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d) + 1/64*(8*b 
*e^(-2*d*x - 2*c) + a + b)*e^(4*d*x + 4*c)/((a^2 + 2*a*b + b^2)*d) + 1/4*b 
*log((a + b)*e^(4*d*x + 4*c) + 2*(a - b)*e^(2*d*x + 2*c) + a + b)/((a^2 + 
2*a*b + b^2)*d) - 1/4*b*log(2*(a - b)*e^(-2*d*x - 2*c) + (a + b)*e^(-4*d*x 
 - 4*c) + a + b)/((a^2 + 2*a*b + b^2)*d) - 1/4*(a*b - b^2)*arctan(1/2*((a 
+ b)*e^(2*d*x + 2*c) + a - b)/sqrt(a*b))/((a^2 + 2*a*b + b^2)*sqrt(a*b)*d) 
 - 1/8*(a^2*b - 6*a*b^2 + b^3)*arctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - 
b)/sqrt(a*b))/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*sqrt(a*b)*d) + 1/4*(a*b - b 
^2)*arctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b)/sqrt(a*b))/((a^2 + 2*a*b 
 + b^2)*sqrt(a*b)*d) - 3/8*b*arctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b) 
/sqrt(a*b))/(sqrt(a*b)*(a + b)*d) - 1/64*(8*b*e^(-2*d*x - 2*c) + (a + b)*e 
^(-4*d*x - 4*c))/((a^2 + 2*a*b + b^2)*d) + 3/8*(d*x + c)/((a + b)*d) + 1/8 
*e^(2*d*x + 2*c)/((a + b)*d) - 1/8*e^(-2*d*x - 2*c)/((a + b)*d)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 301 vs. \(2 (106) = 212\).

Time = 0.95 (sec) , antiderivative size = 301, normalized size of antiderivative = 2.51 \[ \int \frac {\cosh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {\frac {64 \, b^{3} \arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + b e^{\left (2 \, d x + 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{{\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} \sqrt {a b}} + \frac {8 \, {\left (3 \, a^{2} + 10 \, a b + 15 \, b^{2}\right )} {\left (d x + c\right )}}{a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}} - \frac {{\left (18 \, a^{2} e^{\left (4 \, d x + 4 \, c\right )} + 60 \, a b e^{\left (4 \, d x + 4 \, c\right )} + 90 \, b^{2} e^{\left (4 \, d x + 4 \, c\right )} + 8 \, a^{2} e^{\left (2 \, d x + 2 \, c\right )} + 24 \, a b e^{\left (2 \, d x + 2 \, c\right )} + 16 \, b^{2} e^{\left (2 \, d x + 2 \, c\right )} + a^{2} + 2 \, a b + b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )}}{a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}} + \frac {a e^{\left (4 \, d x + 4 \, c\right )} + b e^{\left (4 \, d x + 4 \, c\right )} + 8 \, a e^{\left (2 \, d x + 2 \, c\right )} + 16 \, b e^{\left (2 \, d x + 2 \, c\right )}}{a^{2} + 2 \, a b + b^{2}}}{64 \, d} \] Input:

integrate(cosh(d*x+c)^4/(a+b*tanh(d*x+c)^2),x, algorithm="giac")
 

Output:

1/64*(64*b^3*arctan(1/2*(a*e^(2*d*x + 2*c) + b*e^(2*d*x + 2*c) + a - b)/sq 
rt(a*b))/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*sqrt(a*b)) + 8*(3*a^2 + 10*a*b + 
 15*b^2)*(d*x + c)/(a^3 + 3*a^2*b + 3*a*b^2 + b^3) - (18*a^2*e^(4*d*x + 4* 
c) + 60*a*b*e^(4*d*x + 4*c) + 90*b^2*e^(4*d*x + 4*c) + 8*a^2*e^(2*d*x + 2* 
c) + 24*a*b*e^(2*d*x + 2*c) + 16*b^2*e^(2*d*x + 2*c) + a^2 + 2*a*b + b^2)* 
e^(-4*d*x - 4*c)/(a^3 + 3*a^2*b + 3*a*b^2 + b^3) + (a*e^(4*d*x + 4*c) + b* 
e^(4*d*x + 4*c) + 8*a*e^(2*d*x + 2*c) + 16*b*e^(2*d*x + 2*c))/(a^2 + 2*a*b 
 + b^2))/d
 

Mupad [B] (verification not implemented)

Time = 3.12 (sec) , antiderivative size = 967, normalized size of antiderivative = 8.06 \[ \int \frac {\cosh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx =\text {Too large to display} \] Input:

int(cosh(c + d*x)^4/(a + b*tanh(c + d*x)^2),x)
 

Output:

(x*(10*a*b + 3*a^2 + 15*b^2))/(8*(a + b)^3) - exp(- 4*c - 4*d*x)/(64*d*(a 
+ b)) + exp(4*c + 4*d*x)/(64*d*(a + b)) + (atan((exp(2*c)*exp(2*d*x)*((4*b 
^3)/(d*(a + b)^5*(b^5)^(1/2)*(3*a*b^2 + 3*a^2*b + a^3 + b^3)) + ((a - b)*( 
a^4*d*(b^5)^(1/2) - b^4*d*(b^5)^(1/2) - 2*a*b^3*d*(b^5)^(1/2) + 2*a^3*b*d* 
(b^5)^(1/2)))/(b^3*(a + b)^2*(a*d^2*(a + b)^6)^(1/2)*(3*a*b^2 + 3*a^2*b + 
a^3 + b^3)*(a^7*d^2 + a*b^6*d^2 + 6*a^6*b*d^2 + 6*a^2*b^5*d^2 + 15*a^3*b^4 
*d^2 + 20*a^4*b^3*d^2 + 15*a^5*b^2*d^2)^(1/2))) + ((a - b)*(a^4*d*(b^5)^(1 
/2) + b^4*d*(b^5)^(1/2) + 4*a*b^3*d*(b^5)^(1/2) + 4*a^3*b*d*(b^5)^(1/2) + 
6*a^2*b^2*d*(b^5)^(1/2)))/(b^3*(a + b)^2*(a*d^2*(a + b)^6)^(1/2)*(3*a*b^2 
+ 3*a^2*b + a^3 + b^3)*(a^7*d^2 + a*b^6*d^2 + 6*a^6*b*d^2 + 6*a^2*b^5*d^2 
+ 15*a^3*b^4*d^2 + 20*a^4*b^3*d^2 + 15*a^5*b^2*d^2)^(1/2)))*((a^4*(a^7*d^2 
 + a*b^6*d^2 + 6*a^6*b*d^2 + 6*a^2*b^5*d^2 + 15*a^3*b^4*d^2 + 20*a^4*b^3*d 
^2 + 15*a^5*b^2*d^2)^(1/2))/2 + (b^4*(a^7*d^2 + a*b^6*d^2 + 6*a^6*b*d^2 + 
6*a^2*b^5*d^2 + 15*a^3*b^4*d^2 + 20*a^4*b^3*d^2 + 15*a^5*b^2*d^2)^(1/2))/2 
 + 2*a*b^3*(a^7*d^2 + a*b^6*d^2 + 6*a^6*b*d^2 + 6*a^2*b^5*d^2 + 15*a^3*b^4 
*d^2 + 20*a^4*b^3*d^2 + 15*a^5*b^2*d^2)^(1/2) + 2*a^3*b*(a^7*d^2 + a*b^6*d 
^2 + 6*a^6*b*d^2 + 6*a^2*b^5*d^2 + 15*a^3*b^4*d^2 + 20*a^4*b^3*d^2 + 15*a^ 
5*b^2*d^2)^(1/2) + 3*a^2*b^2*(a^7*d^2 + a*b^6*d^2 + 6*a^6*b*d^2 + 6*a^2*b^ 
5*d^2 + 15*a^3*b^4*d^2 + 20*a^4*b^3*d^2 + 15*a^5*b^2*d^2)^(1/2)))*(b^5)^(1 
/2))/(a^7*d^2 + a*b^6*d^2 + 6*a^6*b*d^2 + 6*a^2*b^5*d^2 + 15*a^3*b^4*d^...
 

Reduce [B] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 333, normalized size of antiderivative = 2.78 \[ \int \frac {\cosh ^4(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {64 e^{4 d x +4 c} \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {e^{d x +c} \sqrt {a +b}-\sqrt {b}}{\sqrt {a}}\right ) b^{2}-64 e^{4 d x +4 c} \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {e^{d x +c} \sqrt {a +b}+\sqrt {b}}{\sqrt {a}}\right ) b^{2}+e^{8 d x +8 c} a^{3}+2 e^{8 d x +8 c} a^{2} b +e^{8 d x +8 c} a \,b^{2}+8 e^{6 d x +6 c} a^{3}+24 e^{6 d x +6 c} a^{2} b +16 e^{6 d x +6 c} a \,b^{2}+24 e^{4 d x +4 c} a^{3} d x +80 e^{4 d x +4 c} a^{2} b d x +120 e^{4 d x +4 c} a \,b^{2} d x -8 e^{2 d x +2 c} a^{3}-24 e^{2 d x +2 c} a^{2} b -16 e^{2 d x +2 c} a \,b^{2}-a^{3}-2 a^{2} b -a \,b^{2}}{64 e^{4 d x +4 c} a d \left (a^{3}+3 a^{2} b +3 a \,b^{2}+b^{3}\right )} \] Input:

int(cosh(d*x+c)^4/(a+b*tanh(d*x+c)^2),x)
 

Output:

(64*e**(4*c + 4*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d*x)*sqrt(a + b) - sqrt 
(b))/sqrt(a))*b**2 - 64*e**(4*c + 4*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d*x 
)*sqrt(a + b) + sqrt(b))/sqrt(a))*b**2 + e**(8*c + 8*d*x)*a**3 + 2*e**(8*c 
 + 8*d*x)*a**2*b + e**(8*c + 8*d*x)*a*b**2 + 8*e**(6*c + 6*d*x)*a**3 + 24* 
e**(6*c + 6*d*x)*a**2*b + 16*e**(6*c + 6*d*x)*a*b**2 + 24*e**(4*c + 4*d*x) 
*a**3*d*x + 80*e**(4*c + 4*d*x)*a**2*b*d*x + 120*e**(4*c + 4*d*x)*a*b**2*d 
*x - 8*e**(2*c + 2*d*x)*a**3 - 24*e**(2*c + 2*d*x)*a**2*b - 16*e**(2*c + 2 
*d*x)*a*b**2 - a**3 - 2*a**2*b - a*b**2)/(64*e**(4*c + 4*d*x)*a*d*(a**3 + 
3*a**2*b + 3*a*b**2 + b**3))