\(\int \frac {\text {sech}^2(c+d x)}{(a+b \tanh ^2(c+d x))^2} \, dx\) [119]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 66 \[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {\arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} \sqrt {b} d}+\frac {\tanh (c+d x)}{2 a d \left (a+b \tanh ^2(c+d x)\right )} \] Output:

1/2*arctan(b^(1/2)*tanh(d*x+c)/a^(1/2))/a^(3/2)/b^(1/2)/d+1/2*tanh(d*x+c)/ 
a/d/(a+b*tanh(d*x+c)^2)
 

Mathematica [A] (verified)

Time = 0.59 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.95 \[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {\frac {\arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {b}}+\frac {\sqrt {a} \tanh (c+d x)}{a+b \tanh ^2(c+d x)}}{2 a^{3/2} d} \] Input:

Integrate[Sech[c + d*x]^2/(a + b*Tanh[c + d*x]^2)^2,x]
 

Output:

(ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]]/Sqrt[b] + (Sqrt[a]*Tanh[c + d*x]) 
/(a + b*Tanh[c + d*x]^2))/(2*a^(3/2)*d)
 

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.97, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3042, 4158, 215, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {sech}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sec (i c+i d x)^2}{\left (a-b \tan (i c+i d x)^2\right )^2}dx\)

\(\Big \downarrow \) 4158

\(\displaystyle \frac {\int \frac {1}{\left (b \tanh ^2(c+d x)+a\right )^2}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 215

\(\displaystyle \frac {\frac {\int \frac {1}{b \tanh ^2(c+d x)+a}d\tanh (c+d x)}{2 a}+\frac {\tanh (c+d x)}{2 a \left (a+b \tanh ^2(c+d x)\right )}}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} \sqrt {b}}+\frac {\tanh (c+d x)}{2 a \left (a+b \tanh ^2(c+d x)\right )}}{d}\)

Input:

Int[Sech[c + d*x]^2/(a + b*Tanh[c + d*x]^2)^2,x]
 

Output:

(ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]]/(2*a^(3/2)*Sqrt[b]) + Tanh[c + d* 
x]/(2*a*(a + b*Tanh[c + d*x]^2)))/d
 

Defintions of rubi rules used

rule 215
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^2)^(p + 1) 
/(2*a*(p + 1))), x] + Simp[(2*p + 3)/(2*a*(p + 1))   Int[(a + b*x^2)^(p + 1 
), x], x] /; FreeQ[{a, b}, x] && LtQ[p, -1] && (IntegerQ[4*p] || IntegerQ[6 
*p])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4158
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_ 
)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/(c^(m - 1)*f)   Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x)^n)^ 
p, x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && I 
ntegerQ[m/2] && (IntegersQ[n, p] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] 
 || EqQ[n^2, 16])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(209\) vs. \(2(54)=108\).

Time = 26.23 (sec) , antiderivative size = 210, normalized size of antiderivative = 3.18

method result size
risch \(-\frac {{\mathrm e}^{2 d x +2 c} a -{\mathrm e}^{2 d x +2 c} b +a +b}{\left (a +b \right ) a d \left ({\mathrm e}^{4 d x +4 c} a +b \,{\mathrm e}^{4 d x +4 c}+2 \,{\mathrm e}^{2 d x +2 c} a -2 \,{\mathrm e}^{2 d x +2 c} b +a +b \right )}-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}-2 a b}{\left (a +b \right ) \sqrt {-a b}}\right )}{4 \sqrt {-a b}\, d a}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}+2 a b}{\left (a +b \right ) \sqrt {-a b}}\right )}{4 \sqrt {-a b}\, d a}\) \(210\)
derivativedivides \(\frac {-\frac {2 \left (-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 a}-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a}\right )}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a}-\frac {\left (a +\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}+\frac {\left (-a +\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}}{d}\) \(232\)
default \(\frac {-\frac {2 \left (-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 a}-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a}\right )}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a}-\frac {\left (a +\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}+\frac {\left (-a +\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}}{d}\) \(232\)

Input:

int(sech(d*x+c)^2/(a+tanh(d*x+c)^2*b)^2,x,method=_RETURNVERBOSE)
 

Output:

-(exp(2*d*x+2*c)*a-exp(2*d*x+2*c)*b+a+b)/(a+b)/a/d/(exp(4*d*x+4*c)*a+b*exp 
(4*d*x+4*c)+2*exp(2*d*x+2*c)*a-2*exp(2*d*x+2*c)*b+a+b)-1/4/(-a*b)^(1/2)/d/ 
a*ln(exp(2*d*x+2*c)+(a*(-a*b)^(1/2)-b*(-a*b)^(1/2)-2*a*b)/(a+b)/(-a*b)^(1/ 
2))+1/4/(-a*b)^(1/2)/d/a*ln(exp(2*d*x+2*c)+(a*(-a*b)^(1/2)-b*(-a*b)^(1/2)+ 
2*a*b)/(a+b)/(-a*b)^(1/2))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 606 vs. \(2 (54) = 108\).

Time = 0.12 (sec) , antiderivative size = 1515, normalized size of antiderivative = 22.95 \[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(sech(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x, algorithm="fricas")
 

Output:

[-1/4*(4*a^2*b + 4*a*b^2 + 4*(a^2*b - a*b^2)*cosh(d*x + c)^2 + 8*(a^2*b - 
a*b^2)*cosh(d*x + c)*sinh(d*x + c) + 4*(a^2*b - a*b^2)*sinh(d*x + c)^2 + ( 
(a^2 + 2*a*b + b^2)*cosh(d*x + c)^4 + 4*(a^2 + 2*a*b + b^2)*cosh(d*x + c)* 
sinh(d*x + c)^3 + (a^2 + 2*a*b + b^2)*sinh(d*x + c)^4 + 2*(a^2 - b^2)*cosh 
(d*x + c)^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 + a^2 - b^2)*sinh(d 
*x + c)^2 + a^2 + 2*a*b + b^2 + 4*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^3 + ( 
a^2 - b^2)*cosh(d*x + c))*sinh(d*x + c))*sqrt(-a*b)*log(((a^2 + 2*a*b + b^ 
2)*cosh(d*x + c)^4 + 4*(a^2 + 2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + 
 (a^2 + 2*a*b + b^2)*sinh(d*x + c)^4 + 2*(a^2 - b^2)*cosh(d*x + c)^2 + 2*( 
3*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 + a^2 - b^2)*sinh(d*x + c)^2 + a^2 - 
 6*a*b + b^2 + 4*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^3 + (a^2 - b^2)*cosh(d 
*x + c))*sinh(d*x + c) - 4*((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x + 
 c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)^2 + a - b)*sqrt(-a*b))/((a + b)* 
cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d 
*x + c)^4 + 2*(a - b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - 
 b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 + (a - b)*cosh(d*x + c))* 
sinh(d*x + c) + a + b)))/((a^4*b + 2*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^4 
+ 4*(a^4*b + 2*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^4*b 
 + 2*a^3*b^2 + a^2*b^3)*d*sinh(d*x + c)^4 + 2*(a^4*b - a^2*b^3)*d*cosh(d*x 
 + c)^2 + 2*(3*(a^4*b + 2*a^3*b^2 + a^2*b^3)*d*cosh(d*x + c)^2 + (a^4*b...
 

Sympy [F]

\[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int \frac {\operatorname {sech}^{2}{\left (c + d x \right )}}{\left (a + b \tanh ^{2}{\left (c + d x \right )}\right )^{2}}\, dx \] Input:

integrate(sech(d*x+c)**2/(a+b*tanh(d*x+c)**2)**2,x)
 

Output:

Integral(sech(c + d*x)**2/(a + b*tanh(c + d*x)**2)**2, x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 125 vs. \(2 (54) = 108\).

Time = 0.20 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.89 \[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {{\left (a - b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a + b}{{\left (a^{3} + 2 \, a^{2} b + a b^{2} + 2 \, {\left (a^{3} - a b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )}\right )} d} - \frac {\arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{2 \, \sqrt {a b} a d} \] Input:

integrate(sech(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x, algorithm="maxima")
 

Output:

((a - b)*e^(-2*d*x - 2*c) + a + b)/((a^3 + 2*a^2*b + a*b^2 + 2*(a^3 - a*b^ 
2)*e^(-2*d*x - 2*c) + (a^3 + 2*a^2*b + a*b^2)*e^(-4*d*x - 4*c))*d) - 1/2*a 
rctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b)/sqrt(a*b))/(sqrt(a*b)*a*d)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 138 vs. \(2 (54) = 108\).

Time = 0.33 (sec) , antiderivative size = 138, normalized size of antiderivative = 2.09 \[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {\frac {\arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + b e^{\left (2 \, d x + 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{\sqrt {a b} a} - \frac {2 \, {\left (a e^{\left (2 \, d x + 2 \, c\right )} - b e^{\left (2 \, d x + 2 \, c\right )} + a + b\right )}}{{\left (a^{2} + a b\right )} {\left (a e^{\left (4 \, d x + 4 \, c\right )} + b e^{\left (4 \, d x + 4 \, c\right )} + 2 \, a e^{\left (2 \, d x + 2 \, c\right )} - 2 \, b e^{\left (2 \, d x + 2 \, c\right )} + a + b\right )}}}{2 \, d} \] Input:

integrate(sech(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x, algorithm="giac")
 

Output:

1/2*(arctan(1/2*(a*e^(2*d*x + 2*c) + b*e^(2*d*x + 2*c) + a - b)/sqrt(a*b)) 
/(sqrt(a*b)*a) - 2*(a*e^(2*d*x + 2*c) - b*e^(2*d*x + 2*c) + a + b)/((a^2 + 
 a*b)*(a*e^(4*d*x + 4*c) + b*e^(4*d*x + 4*c) + 2*a*e^(2*d*x + 2*c) - 2*b*e 
^(2*d*x + 2*c) + a + b)))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int \frac {1}{{\mathrm {cosh}\left (c+d\,x\right )}^2\,{\left (b\,{\mathrm {tanh}\left (c+d\,x\right )}^2+a\right )}^2} \,d x \] Input:

int(1/(cosh(c + d*x)^2*(a + b*tanh(c + d*x)^2)^2),x)
 

Output:

int(1/(cosh(c + d*x)^2*(a + b*tanh(c + d*x)^2)^2), x)
 

Reduce [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 508, normalized size of antiderivative = 7.70 \[ \int \frac {\text {sech}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {e^{4 d x +4 c} \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {e^{d x +c} \sqrt {a +b}-\sqrt {b}}{\sqrt {a}}\right ) a +e^{4 d x +4 c} \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {e^{d x +c} \sqrt {a +b}-\sqrt {b}}{\sqrt {a}}\right ) b +2 e^{2 d x +2 c} \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {e^{d x +c} \sqrt {a +b}-\sqrt {b}}{\sqrt {a}}\right ) a -2 e^{2 d x +2 c} \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {e^{d x +c} \sqrt {a +b}-\sqrt {b}}{\sqrt {a}}\right ) b +\sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {e^{d x +c} \sqrt {a +b}-\sqrt {b}}{\sqrt {a}}\right ) a +\sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {e^{d x +c} \sqrt {a +b}-\sqrt {b}}{\sqrt {a}}\right ) b -e^{4 d x +4 c} \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {e^{d x +c} \sqrt {a +b}+\sqrt {b}}{\sqrt {a}}\right ) a -e^{4 d x +4 c} \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {e^{d x +c} \sqrt {a +b}+\sqrt {b}}{\sqrt {a}}\right ) b -2 e^{2 d x +2 c} \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {e^{d x +c} \sqrt {a +b}+\sqrt {b}}{\sqrt {a}}\right ) a +2 e^{2 d x +2 c} \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {e^{d x +c} \sqrt {a +b}+\sqrt {b}}{\sqrt {a}}\right ) b -\sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {e^{d x +c} \sqrt {a +b}+\sqrt {b}}{\sqrt {a}}\right ) a -\sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {e^{d x +c} \sqrt {a +b}+\sqrt {b}}{\sqrt {a}}\right ) b +e^{4 d x +4 c} a b -a b}{2 a^{2} b d \left (e^{4 d x +4 c} a +e^{4 d x +4 c} b +2 e^{2 d x +2 c} a -2 e^{2 d x +2 c} b +a +b \right )} \] Input:

int(sech(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x)
 

Output:

(e**(4*c + 4*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b) 
)/sqrt(a))*a + e**(4*c + 4*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d*x)*sqrt(a 
+ b) - sqrt(b))/sqrt(a))*b + 2*e**(2*c + 2*d*x)*sqrt(b)*sqrt(a)*atan((e**( 
c + d*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*a - 2*e**(2*c + 2*d*x)*sqrt(b)*sq 
rt(a)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*b + sqrt(b)*sqrt( 
a)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*a + sqrt(b)*sqrt(a)* 
atan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*b - e**(4*c + 4*d*x)*sq 
rt(b)*sqrt(a)*atan((e**(c + d*x)*sqrt(a + b) + sqrt(b))/sqrt(a))*a - e**(4 
*c + 4*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d*x)*sqrt(a + b) + sqrt(b))/sqrt 
(a))*b - 2*e**(2*c + 2*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d*x)*sqrt(a + b) 
 + sqrt(b))/sqrt(a))*a + 2*e**(2*c + 2*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + 
d*x)*sqrt(a + b) + sqrt(b))/sqrt(a))*b - sqrt(b)*sqrt(a)*atan((e**(c + d*x 
)*sqrt(a + b) + sqrt(b))/sqrt(a))*a - sqrt(b)*sqrt(a)*atan((e**(c + d*x)*s 
qrt(a + b) + sqrt(b))/sqrt(a))*b + e**(4*c + 4*d*x)*a*b - a*b)/(2*a**2*b*d 
*(e**(4*c + 4*d*x)*a + e**(4*c + 4*d*x)*b + 2*e**(2*c + 2*d*x)*a - 2*e**(2 
*c + 2*d*x)*b + a + b))