\(\int \frac {\text {sech}^5(c+d x)}{(a+b \tanh ^2(c+d x))^2} \, dx\) [122]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 102 \[ \int \frac {\text {sech}^5(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {\arctan (\sinh (c+d x))}{b^2 d}-\frac {(2 a-b) \sqrt {a+b} \arctan \left (\frac {\sqrt {a+b} \sinh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} b^2 d}+\frac {(a+b) \sinh (c+d x)}{2 a b d \left (a+(a+b) \sinh ^2(c+d x)\right )} \] Output:

arctan(sinh(d*x+c))/b^2/d-1/2*(2*a-b)*(a+b)^(1/2)*arctan((a+b)^(1/2)*sinh( 
d*x+c)/a^(1/2))/a^(3/2)/b^2/d+1/2*(a+b)*sinh(d*x+c)/a/b/d/(a+(a+b)*sinh(d* 
x+c)^2)
 

Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.99 \[ \int \frac {\text {sech}^5(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {(a-b) \left (\left (2 a^2+a b-b^2\right ) \arctan \left (\frac {\sqrt {a} \text {csch}(c+d x)}{\sqrt {a+b}}\right )+4 a^{3/2} \sqrt {a+b} \arctan \left (\tanh \left (\frac {1}{2} (c+d x)\right )\right )\right )+(a+b) \left (\left (2 a^2+a b-b^2\right ) \arctan \left (\frac {\sqrt {a} \text {csch}(c+d x)}{\sqrt {a+b}}\right )+4 a^{3/2} \sqrt {a+b} \arctan \left (\tanh \left (\frac {1}{2} (c+d x)\right )\right )\right ) \cosh (2 (c+d x))+2 \sqrt {a} b (a+b)^{3/2} \sinh (c+d x)}{2 a^{3/2} b^2 \sqrt {a+b} d (a-b+(a+b) \cosh (2 (c+d x)))} \] Input:

Integrate[Sech[c + d*x]^5/(a + b*Tanh[c + d*x]^2)^2,x]
 

Output:

((a - b)*((2*a^2 + a*b - b^2)*ArcTan[(Sqrt[a]*Csch[c + d*x])/Sqrt[a + b]] 
+ 4*a^(3/2)*Sqrt[a + b]*ArcTan[Tanh[(c + d*x)/2]]) + (a + b)*((2*a^2 + a*b 
 - b^2)*ArcTan[(Sqrt[a]*Csch[c + d*x])/Sqrt[a + b]] + 4*a^(3/2)*Sqrt[a + b 
]*ArcTan[Tanh[(c + d*x)/2]])*Cosh[2*(c + d*x)] + 2*Sqrt[a]*b*(a + b)^(3/2) 
*Sinh[c + d*x])/(2*a^(3/2)*b^2*Sqrt[a + b]*d*(a - b + (a + b)*Cosh[2*(c + 
d*x)]))
 

Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.05, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3042, 4159, 316, 397, 216, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {sech}^5(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sec (i c+i d x)^5}{\left (a-b \tan (i c+i d x)^2\right )^2}dx\)

\(\Big \downarrow \) 4159

\(\displaystyle \frac {\int \frac {1}{\left (\sinh ^2(c+d x)+1\right ) \left ((a+b) \sinh ^2(c+d x)+a\right )^2}d\sinh (c+d x)}{d}\)

\(\Big \downarrow \) 316

\(\displaystyle \frac {\frac {(a+b) \sinh (c+d x)}{2 a b \left ((a+b) \sinh ^2(c+d x)+a\right )}-\frac {\int \frac {-\left ((a+b) \sinh ^2(c+d x)\right )+a-b}{\left (\sinh ^2(c+d x)+1\right ) \left ((a+b) \sinh ^2(c+d x)+a\right )}d\sinh (c+d x)}{2 a b}}{d}\)

\(\Big \downarrow \) 397

\(\displaystyle \frac {\frac {(a+b) \sinh (c+d x)}{2 a b \left ((a+b) \sinh ^2(c+d x)+a\right )}-\frac {\frac {(2 a-b) (a+b) \int \frac {1}{(a+b) \sinh ^2(c+d x)+a}d\sinh (c+d x)}{b}-\frac {2 a \int \frac {1}{\sinh ^2(c+d x)+1}d\sinh (c+d x)}{b}}{2 a b}}{d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {(a+b) \sinh (c+d x)}{2 a b \left ((a+b) \sinh ^2(c+d x)+a\right )}-\frac {\frac {(2 a-b) (a+b) \int \frac {1}{(a+b) \sinh ^2(c+d x)+a}d\sinh (c+d x)}{b}-\frac {2 a \arctan (\sinh (c+d x))}{b}}{2 a b}}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {(a+b) \sinh (c+d x)}{2 a b \left ((a+b) \sinh ^2(c+d x)+a\right )}-\frac {\frac {(2 a-b) \sqrt {a+b} \arctan \left (\frac {\sqrt {a+b} \sinh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} b}-\frac {2 a \arctan (\sinh (c+d x))}{b}}{2 a b}}{d}\)

Input:

Int[Sech[c + d*x]^5/(a + b*Tanh[c + d*x]^2)^2,x]
 

Output:

(-1/2*((-2*a*ArcTan[Sinh[c + d*x]])/b + ((2*a - b)*Sqrt[a + b]*ArcTan[(Sqr 
t[a + b]*Sinh[c + d*x])/Sqrt[a]])/(Sqrt[a]*b))/(a*b) + ((a + b)*Sinh[c + d 
*x])/(2*a*b*(a + (a + b)*Sinh[c + d*x]^2)))/d
 

Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 316
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[1/(2*a*(p + 1)*(b*c - a*d))   Int[(a + b*x^2)^(p + 1)*(c + d*x 
^2)^q*Simp[b*c + 2*(p + 1)*(b*c - a*d) + d*b*(2*(p + q + 2) + 1)*x^2, x], x 
], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  ! 
( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, c, d, 2, 
 p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4159
Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_ 
))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff/f 
  Subst[Int[ExpandToSum[b*(ff*x)^n + a*(1 - ff^2*x^2)^(n/2), x]^p/(1 - ff^2 
*x^2)^((m + n*p + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f} 
, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] && IntegerQ[p]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(272\) vs. \(2(90)=180\).

Time = 244.37 (sec) , antiderivative size = 273, normalized size of antiderivative = 2.68

method result size
derivativedivides \(\frac {\frac {2 \arctan \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{2}}-\frac {2 \left (\frac {\frac {\left (a +b \right ) b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 a}-\frac {\left (a +b \right ) b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a}+\frac {\left (2 a^{2}+a b -b^{2}\right ) \left (\frac {\left (\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2}\right )}{b^{2}}}{d}\) \(273\)
default \(\frac {\frac {2 \arctan \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{2}}-\frac {2 \left (\frac {\frac {\left (a +b \right ) b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 a}-\frac {\left (a +b \right ) b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a}+\frac {\left (2 a^{2}+a b -b^{2}\right ) \left (\frac {\left (\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2}\right )}{b^{2}}}{d}\) \(273\)
risch \(\frac {{\mathrm e}^{d x +c} \left (a +b \right ) \left ({\mathrm e}^{2 d x +2 c}-1\right )}{a b d \left ({\mathrm e}^{4 d x +4 c} a +b \,{\mathrm e}^{4 d x +4 c}+2 \,{\mathrm e}^{2 d x +2 c} a -2 \,{\mathrm e}^{2 d x +2 c} b +a +b \right )}+\frac {i \ln \left ({\mathrm e}^{d x +c}+i\right )}{d \,b^{2}}-\frac {i \ln \left ({\mathrm e}^{d x +c}-i\right )}{d \,b^{2}}+\frac {\sqrt {-a \left (a +b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a \left (a +b \right )}\, {\mathrm e}^{d x +c}}{a +b}-1\right )}{2 a d \,b^{2}}-\frac {\sqrt {-a \left (a +b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a \left (a +b \right )}\, {\mathrm e}^{d x +c}}{a +b}-1\right )}{4 a^{2} d b}-\frac {\sqrt {-a \left (a +b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {-a \left (a +b \right )}\, {\mathrm e}^{d x +c}}{a +b}-1\right )}{2 a d \,b^{2}}+\frac {\sqrt {-a \left (a +b \right )}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {-a \left (a +b \right )}\, {\mathrm e}^{d x +c}}{a +b}-1\right )}{4 a^{2} d b}\) \(329\)

Input:

int(sech(d*x+c)^5/(a+tanh(d*x+c)^2*b)^2,x,method=_RETURNVERBOSE)
 

Output:

1/d*(2/b^2*arctan(tanh(1/2*d*x+1/2*c))-2/b^2*((1/2*(a+b)*b/a*tanh(1/2*d*x+ 
1/2*c)^3-1/2*(a+b)*b/a*tanh(1/2*d*x+1/2*c))/(tanh(1/2*d*x+1/2*c)^4*a+2*tan 
h(1/2*d*x+1/2*c)^2*a+4*b*tanh(1/2*d*x+1/2*c)^2+a)+1/2*(2*a^2+a*b-b^2)*(1/2 
*(((a+b)*b)^(1/2)+b)/a/((a+b)*b)^(1/2)/((2*((a+b)*b)^(1/2)+a+2*b)*a)^(1/2) 
*arctan(a*tanh(1/2*d*x+1/2*c)/((2*((a+b)*b)^(1/2)+a+2*b)*a)^(1/2))-1/2*((( 
a+b)*b)^(1/2)-b)/a/((a+b)*b)^(1/2)/((2*((a+b)*b)^(1/2)-a-2*b)*a)^(1/2)*arc 
tanh(a*tanh(1/2*d*x+1/2*c)/((2*((a+b)*b)^(1/2)-a-2*b)*a)^(1/2)))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1078 vs. \(2 (90) = 180\).

Time = 0.14 (sec) , antiderivative size = 2140, normalized size of antiderivative = 20.98 \[ \int \frac {\text {sech}^5(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(sech(d*x+c)^5/(a+b*tanh(d*x+c)^2)^2,x, algorithm="fricas")
 

Output:

[1/4*(4*(a*b + b^2)*cosh(d*x + c)^3 + 12*(a*b + b^2)*cosh(d*x + c)*sinh(d* 
x + c)^2 + 4*(a*b + b^2)*sinh(d*x + c)^3 - ((2*a^2 + a*b - b^2)*cosh(d*x + 
 c)^4 + 4*(2*a^2 + a*b - b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (2*a^2 + a*b 
 - b^2)*sinh(d*x + c)^4 + 2*(2*a^2 - 3*a*b + b^2)*cosh(d*x + c)^2 + 2*(3*( 
2*a^2 + a*b - b^2)*cosh(d*x + c)^2 + 2*a^2 - 3*a*b + b^2)*sinh(d*x + c)^2 
+ 2*a^2 + a*b - b^2 + 4*((2*a^2 + a*b - b^2)*cosh(d*x + c)^3 + (2*a^2 - 3* 
a*b + b^2)*cosh(d*x + c))*sinh(d*x + c))*sqrt(-(a + b)/a)*log(((a + b)*cos 
h(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x 
+ c)^4 - 2*(3*a + b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 - 3*a 
- b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 - (3*a + b)*cosh(d*x + c 
))*sinh(d*x + c) + 4*(a*cosh(d*x + c)^3 + 3*a*cosh(d*x + c)*sinh(d*x + c)^ 
2 + a*sinh(d*x + c)^3 - a*cosh(d*x + c) + (3*a*cosh(d*x + c)^2 - a)*sinh(d 
*x + c))*sqrt(-(a + b)/a) + a + b)/((a + b)*cosh(d*x + c)^4 + 4*(a + b)*co 
sh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x + c)^4 + 2*(a - b)*cosh(d*x 
 + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - b)*sinh(d*x + c)^2 + 4*((a + 
b)*cosh(d*x + c)^3 + (a - b)*cosh(d*x + c))*sinh(d*x + c) + a + b)) + 8*(( 
a^2 + a*b)*cosh(d*x + c)^4 + 4*(a^2 + a*b)*cosh(d*x + c)*sinh(d*x + c)^3 + 
 (a^2 + a*b)*sinh(d*x + c)^4 + 2*(a^2 - a*b)*cosh(d*x + c)^2 + 2*(3*(a^2 + 
 a*b)*cosh(d*x + c)^2 + a^2 - a*b)*sinh(d*x + c)^2 + a^2 + a*b + 4*((a^2 + 
 a*b)*cosh(d*x + c)^3 + (a^2 - a*b)*cosh(d*x + c))*sinh(d*x + c))*arcta...
 

Sympy [F]

\[ \int \frac {\text {sech}^5(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int \frac {\operatorname {sech}^{5}{\left (c + d x \right )}}{\left (a + b \tanh ^{2}{\left (c + d x \right )}\right )^{2}}\, dx \] Input:

integrate(sech(d*x+c)**5/(a+b*tanh(d*x+c)**2)**2,x)
 

Output:

Integral(sech(c + d*x)**5/(a + b*tanh(c + d*x)**2)**2, x)
 

Maxima [F]

\[ \int \frac {\text {sech}^5(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int { \frac {\operatorname {sech}\left (d x + c\right )^{5}}{{\left (b \tanh \left (d x + c\right )^{2} + a\right )}^{2}} \,d x } \] Input:

integrate(sech(d*x+c)^5/(a+b*tanh(d*x+c)^2)^2,x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

((a*e^(3*c) + b*e^(3*c))*e^(3*d*x) - (a*e^c + b*e^c)*e^(d*x))/(a^2*b*d + a 
*b^2*d + (a^2*b*d*e^(4*c) + a*b^2*d*e^(4*c))*e^(4*d*x) + 2*(a^2*b*d*e^(2*c 
) - a*b^2*d*e^(2*c))*e^(2*d*x)) + 2*arctan(e^(d*x + c))/(b^2*d) - 32*integ 
rate(1/32*((2*a^2*e^(3*c) + a*b*e^(3*c) - b^2*e^(3*c))*e^(3*d*x) + (2*a^2* 
e^c + a*b*e^c - b^2*e^c)*e^(d*x))/(a^2*b^2 + a*b^3 + (a^2*b^2*e^(4*c) + a* 
b^3*e^(4*c))*e^(4*d*x) + 2*(a^2*b^2*e^(2*c) - a*b^3*e^(2*c))*e^(2*d*x)), x 
)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\text {sech}^5(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(sech(d*x+c)^5/(a+b*tanh(d*x+c)^2)^2,x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Limit: Max order reached or unable 
to make series expansion Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\text {sech}^5(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int \frac {1}{{\mathrm {cosh}\left (c+d\,x\right )}^5\,{\left (b\,{\mathrm {tanh}\left (c+d\,x\right )}^2+a\right )}^2} \,d x \] Input:

int(1/(cosh(c + d*x)^5*(a + b*tanh(c + d*x)^2)^2),x)
 

Output:

int(1/(cosh(c + d*x)^5*(a + b*tanh(c + d*x)^2)^2), x)
 

Reduce [B] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 950, normalized size of antiderivative = 9.31 \[ \int \frac {\text {sech}^5(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx =\text {Too large to display} \] Input:

int(sech(d*x+c)^5/(a+b*tanh(d*x+c)^2)^2,x)
 

Output:

(4*e**(4*c + 4*d*x)*atan(e**(c + d*x))*a**3 + 4*e**(4*c + 4*d*x)*atan(e**( 
c + d*x))*a**2*b + 8*e**(2*c + 2*d*x)*atan(e**(c + d*x))*a**3 - 8*e**(2*c 
+ 2*d*x)*atan(e**(c + d*x))*a**2*b + 4*atan(e**(c + d*x))*a**3 + 4*atan(e* 
*(c + d*x))*a**2*b - 2*e**(4*c + 4*d*x)*sqrt(a)*sqrt(a + b)*atan((e**(c + 
d*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*a**2 - e**(4*c + 4*d*x)*sqrt(a)*sqrt( 
a + b)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*a*b + e**(4*c + 
4*d*x)*sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt( 
a))*b**2 - 4*e**(2*c + 2*d*x)*sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt( 
a + b) - sqrt(b))/sqrt(a))*a**2 + 6*e**(2*c + 2*d*x)*sqrt(a)*sqrt(a + b)*a 
tan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*a*b - 2*e**(2*c + 2*d*x) 
*sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*b* 
*2 - 2*sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt( 
a))*a**2 - sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/s 
qrt(a))*a*b + sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b) 
)/sqrt(a))*b**2 - 2*e**(4*c + 4*d*x)*sqrt(a)*sqrt(a + b)*atan((e**(c + d*x 
)*sqrt(a + b) + sqrt(b))/sqrt(a))*a**2 - e**(4*c + 4*d*x)*sqrt(a)*sqrt(a + 
 b)*atan((e**(c + d*x)*sqrt(a + b) + sqrt(b))/sqrt(a))*a*b + e**(4*c + 4*d 
*x)*sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a + b) + sqrt(b))/sqrt(a)) 
*b**2 - 4*e**(2*c + 2*d*x)*sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a + 
 b) + sqrt(b))/sqrt(a))*a**2 + 6*e**(2*c + 2*d*x)*sqrt(a)*sqrt(a + b)*a...