\(\int \frac {\tanh ^3(c+d x)}{(a+b \tanh ^2(c+d x))^3} \, dx\) [193]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 98 \[ \int \frac {\tanh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx=\frac {\log (\cosh (c+d x))}{(a+b)^3 d}+\frac {\log \left (a+b \tanh ^2(c+d x)\right )}{2 (a+b)^3 d}+\frac {a}{4 b (a+b) d \left (a+b \tanh ^2(c+d x)\right )^2}-\frac {1}{2 (a+b)^2 d \left (a+b \tanh ^2(c+d x)\right )} \] Output:

ln(cosh(d*x+c))/(a+b)^3/d+1/2*ln(a+b*tanh(d*x+c)^2)/(a+b)^3/d+1/4*a/b/(a+b 
)/d/(a+b*tanh(d*x+c)^2)^2-1/2/(a+b)^2/d/(a+b*tanh(d*x+c)^2)
 

Mathematica [A] (verified)

Time = 0.33 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.82 \[ \int \frac {\tanh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx=\frac {4 \log (\cosh (c+d x))+2 \log \left (a+b \tanh ^2(c+d x)\right )+\frac {a (a+b)^2}{b \left (a+b \tanh ^2(c+d x)\right )^2}-\frac {2 (a+b)}{a+b \tanh ^2(c+d x)}}{4 (a+b)^3 d} \] Input:

Integrate[Tanh[c + d*x]^3/(a + b*Tanh[c + d*x]^2)^3,x]
 

Output:

(4*Log[Cosh[c + d*x]] + 2*Log[a + b*Tanh[c + d*x]^2] + (a*(a + b)^2)/(b*(a 
 + b*Tanh[c + d*x]^2)^2) - (2*(a + b))/(a + b*Tanh[c + d*x]^2))/(4*(a + b) 
^3*d)
 

Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.97, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3042, 26, 4153, 26, 354, 86, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tanh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {i \tan (i c+i d x)^3}{\left (a-b \tan (i c+i d x)^2\right )^3}dx\)

\(\Big \downarrow \) 26

\(\displaystyle i \int \frac {\tan (i c+i d x)^3}{\left (a-b \tan (i c+i d x)^2\right )^3}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle \frac {i \int -\frac {i \tanh ^3(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^2(c+d x)+a\right )^3}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 26

\(\displaystyle \frac {\int \frac {\tanh ^3(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^2(c+d x)+a\right )^3}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 354

\(\displaystyle \frac {\int \frac {\tanh ^2(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^2(c+d x)+a\right )^3}d\tanh ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 86

\(\displaystyle \frac {\int \left (-\frac {a}{(a+b) \left (b \tanh ^2(c+d x)+a\right )^3}-\frac {1}{(a+b)^3 \left (\tanh ^2(c+d x)-1\right )}+\frac {b}{(a+b)^3 \left (b \tanh ^2(c+d x)+a\right )}+\frac {b}{(a+b)^2 \left (b \tanh ^2(c+d x)+a\right )^2}\right )d\tanh ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {a}{2 b (a+b) \left (a+b \tanh ^2(c+d x)\right )^2}-\frac {1}{(a+b)^2 \left (a+b \tanh ^2(c+d x)\right )}-\frac {\log \left (1-\tanh ^2(c+d x)\right )}{(a+b)^3}+\frac {\log \left (a+b \tanh ^2(c+d x)\right )}{(a+b)^3}}{2 d}\)

Input:

Int[Tanh[c + d*x]^3/(a + b*Tanh[c + d*x]^2)^3,x]
 

Output:

(-(Log[1 - Tanh[c + d*x]^2]/(a + b)^3) + Log[a + b*Tanh[c + d*x]^2]/(a + b 
)^3 + a/(2*b*(a + b)*(a + b*Tanh[c + d*x]^2)^2) - 1/((a + b)^2*(a + b*Tanh 
[c + d*x]^2)))/(2*d)
 

Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 86
Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_ 
.), x_] :> Int[ExpandIntegrand[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; 
 FreeQ[{a, b, c, d, e, f, n}, x] && ((ILtQ[n, 0] && ILtQ[p, 0]) || EqQ[p, 1 
] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p 
+ 1, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.17

method result size
derivativedivides \(\frac {-\frac {-\frac {-a -b}{a +b \tanh \left (d x +c \right )^{2}}-\ln \left (a +b \tanh \left (d x +c \right )^{2}\right )-\frac {a \left (a^{2}+2 a b +b^{2}\right )}{2 b \left (a +b \tanh \left (d x +c \right )^{2}\right )^{2}}}{2 \left (a +b \right )^{3}}-\frac {\ln \left (1+\tanh \left (d x +c \right )\right )}{2 \left (a +b \right )^{3}}-\frac {\ln \left (-1+\tanh \left (d x +c \right )\right )}{2 \left (a +b \right )^{3}}}{d}\) \(115\)
default \(\frac {-\frac {-\frac {-a -b}{a +b \tanh \left (d x +c \right )^{2}}-\ln \left (a +b \tanh \left (d x +c \right )^{2}\right )-\frac {a \left (a^{2}+2 a b +b^{2}\right )}{2 b \left (a +b \tanh \left (d x +c \right )^{2}\right )^{2}}}{2 \left (a +b \right )^{3}}-\frac {\ln \left (1+\tanh \left (d x +c \right )\right )}{2 \left (a +b \right )^{3}}-\frac {\ln \left (-1+\tanh \left (d x +c \right )\right )}{2 \left (a +b \right )^{3}}}{d}\) \(115\)
parallelrisch \(\frac {a^{3} b -a \,b^{3}-8 \ln \left (1-\tanh \left (d x +c \right )\right ) \tanh \left (d x +c \right )^{2} a \,b^{3}-4 b^{4} \tanh \left (d x +c \right )^{4} x d -8 x \tanh \left (d x +c \right )^{2} a \,b^{3} d +2 \ln \left (a +b \tanh \left (d x +c \right )^{2}\right ) \tanh \left (d x +c \right )^{4} b^{4}-4 a^{2} b^{2} d x -2 \tanh \left (d x +c \right )^{2} a \,b^{3}-4 \ln \left (1-\tanh \left (d x +c \right )\right ) \tanh \left (d x +c \right )^{4} b^{4}+4 \ln \left (a +b \tanh \left (d x +c \right )^{2}\right ) \tanh \left (d x +c \right )^{2} a \,b^{3}+2 \ln \left (a +b \tanh \left (d x +c \right )^{2}\right ) a^{2} b^{2}-2 \tanh \left (d x +c \right )^{2} b^{4}-4 \ln \left (1-\tanh \left (d x +c \right )\right ) a^{2} b^{2}}{4 \left (a +b \tanh \left (d x +c \right )^{2}\right )^{2} \left (a^{3}+3 a^{2} b +3 a \,b^{2}+b^{3}\right ) b^{2} d}\) \(266\)
risch \(-\frac {x}{a^{3}+3 a^{2} b +3 a \,b^{2}+b^{3}}-\frac {2 c}{d \left (a^{3}+3 a^{2} b +3 a \,b^{2}+b^{3}\right )}+\frac {2 \,{\mathrm e}^{2 d x +2 c} \left (a^{2} {\mathrm e}^{4 d x +4 c}-b^{2} {\mathrm e}^{4 d x +4 c}+2 a^{2} {\mathrm e}^{2 d x +2 c}-2 a b \,{\mathrm e}^{2 d x +2 c}+2 b^{2} {\mathrm e}^{2 d x +2 c}+a^{2}-b^{2}\right )}{\left (a \,{\mathrm e}^{4 d x +4 c}+b \,{\mathrm e}^{4 d x +4 c}+2 a \,{\mathrm e}^{2 d x +2 c}-2 b \,{\mathrm e}^{2 d x +2 c}+a +b \right )^{2} d \left (a^{2}+2 a b +b^{2}\right ) \left (a +b \right )}+\frac {\ln \left ({\mathrm e}^{4 d x +4 c}+\frac {2 \left (a -b \right ) {\mathrm e}^{2 d x +2 c}}{a +b}+1\right )}{2 d \left (a^{3}+3 a^{2} b +3 a \,b^{2}+b^{3}\right )}\) \(272\)

Input:

int(tanh(d*x+c)^3/(a+b*tanh(d*x+c)^2)^3,x,method=_RETURNVERBOSE)
 

Output:

1/d*(-1/2/(a+b)^3*(-(-a-b)/(a+b*tanh(d*x+c)^2)-ln(a+b*tanh(d*x+c)^2)-1/2*a 
*(a^2+2*a*b+b^2)/b/(a+b*tanh(d*x+c)^2)^2)-1/2/(a+b)^3*ln(1+tanh(d*x+c))-1/ 
2/(a+b)^3*ln(-1+tanh(d*x+c)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2611 vs. \(2 (92) = 184\).

Time = 0.14 (sec) , antiderivative size = 2611, normalized size of antiderivative = 26.64 \[ \int \frac {\tanh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx=\text {Too large to display} \] Input:

integrate(tanh(d*x+c)^3/(a+b*tanh(d*x+c)^2)^3,x, algorithm="fricas")
 

Output:

-1/2*(2*(a^2 + 2*a*b + b^2)*d*x*cosh(d*x + c)^8 + 16*(a^2 + 2*a*b + b^2)*d 
*x*cosh(d*x + c)*sinh(d*x + c)^7 + 2*(a^2 + 2*a*b + b^2)*d*x*sinh(d*x + c) 
^8 + 4*(2*(a^2 - b^2)*d*x - a^2 + b^2)*cosh(d*x + c)^6 + 4*(14*(a^2 + 2*a* 
b + b^2)*d*x*cosh(d*x + c)^2 + 2*(a^2 - b^2)*d*x - a^2 + b^2)*sinh(d*x + c 
)^6 + 8*(14*(a^2 + 2*a*b + b^2)*d*x*cosh(d*x + c)^3 + 3*(2*(a^2 - b^2)*d*x 
 - a^2 + b^2)*cosh(d*x + c))*sinh(d*x + c)^5 + 4*((3*a^2 - 2*a*b + 3*b^2)* 
d*x - 2*a^2 + 2*a*b - 2*b^2)*cosh(d*x + c)^4 + 4*(35*(a^2 + 2*a*b + b^2)*d 
*x*cosh(d*x + c)^4 + (3*a^2 - 2*a*b + 3*b^2)*d*x + 15*(2*(a^2 - b^2)*d*x - 
 a^2 + b^2)*cosh(d*x + c)^2 - 2*a^2 + 2*a*b - 2*b^2)*sinh(d*x + c)^4 + 16* 
(7*(a^2 + 2*a*b + b^2)*d*x*cosh(d*x + c)^5 + 5*(2*(a^2 - b^2)*d*x - a^2 + 
b^2)*cosh(d*x + c)^3 + ((3*a^2 - 2*a*b + 3*b^2)*d*x - 2*a^2 + 2*a*b - 2*b^ 
2)*cosh(d*x + c))*sinh(d*x + c)^3 + 2*(a^2 + 2*a*b + b^2)*d*x + 4*(2*(a^2 
- b^2)*d*x - a^2 + b^2)*cosh(d*x + c)^2 + 4*(14*(a^2 + 2*a*b + b^2)*d*x*co 
sh(d*x + c)^6 + 15*(2*(a^2 - b^2)*d*x - a^2 + b^2)*cosh(d*x + c)^4 + 2*(a^ 
2 - b^2)*d*x + 6*((3*a^2 - 2*a*b + 3*b^2)*d*x - 2*a^2 + 2*a*b - 2*b^2)*cos 
h(d*x + c)^2 - a^2 + b^2)*sinh(d*x + c)^2 - ((a^2 + 2*a*b + b^2)*cosh(d*x 
+ c)^8 + 8*(a^2 + 2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^7 + (a^2 + 2*a* 
b + b^2)*sinh(d*x + c)^8 + 4*(a^2 - b^2)*cosh(d*x + c)^6 + 4*(7*(a^2 + 2*a 
*b + b^2)*cosh(d*x + c)^2 + a^2 - b^2)*sinh(d*x + c)^6 + 8*(7*(a^2 + 2*a*b 
 + b^2)*cosh(d*x + c)^3 + 3*(a^2 - b^2)*cosh(d*x + c))*sinh(d*x + c)^5 ...
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\tanh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx=\text {Timed out} \] Input:

integrate(tanh(d*x+c)**3/(a+b*tanh(d*x+c)**2)**3,x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 384 vs. \(2 (92) = 184\).

Time = 0.08 (sec) , antiderivative size = 384, normalized size of antiderivative = 3.92 \[ \int \frac {\tanh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx=\frac {d x + c}{{\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} d} + \frac {2 \, {\left ({\left (a^{2} - b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + 2 \, {\left (a^{2} - a b + b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )} + {\left (a^{2} - b^{2}\right )} e^{\left (-6 \, d x - 6 \, c\right )}\right )}}{{\left (a^{5} + 5 \, a^{4} b + 10 \, a^{3} b^{2} + 10 \, a^{2} b^{3} + 5 \, a b^{4} + b^{5} + 4 \, {\left (a^{5} + 3 \, a^{4} b + 2 \, a^{3} b^{2} - 2 \, a^{2} b^{3} - 3 \, a b^{4} - b^{5}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + 2 \, {\left (3 \, a^{5} + 7 \, a^{4} b + 6 \, a^{3} b^{2} + 6 \, a^{2} b^{3} + 7 \, a b^{4} + 3 \, b^{5}\right )} e^{\left (-4 \, d x - 4 \, c\right )} + 4 \, {\left (a^{5} + 3 \, a^{4} b + 2 \, a^{3} b^{2} - 2 \, a^{2} b^{3} - 3 \, a b^{4} - b^{5}\right )} e^{\left (-6 \, d x - 6 \, c\right )} + {\left (a^{5} + 5 \, a^{4} b + 10 \, a^{3} b^{2} + 10 \, a^{2} b^{3} + 5 \, a b^{4} + b^{5}\right )} e^{\left (-8 \, d x - 8 \, c\right )}\right )} d} + \frac {\log \left (2 \, {\left (a - b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a + b\right )} e^{\left (-4 \, d x - 4 \, c\right )} + a + b\right )}{2 \, {\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} d} \] Input:

integrate(tanh(d*x+c)^3/(a+b*tanh(d*x+c)^2)^3,x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

(d*x + c)/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d) + 2*((a^2 - b^2)*e^(-2*d*x - 
 2*c) + 2*(a^2 - a*b + b^2)*e^(-4*d*x - 4*c) + (a^2 - b^2)*e^(-6*d*x - 6*c 
))/((a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5 + 4*(a^5 + 3* 
a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*e^(-2*d*x - 2*c) + 2*(3*a^5 
 + 7*a^4*b + 6*a^3*b^2 + 6*a^2*b^3 + 7*a*b^4 + 3*b^5)*e^(-4*d*x - 4*c) + 4 
*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*e^(-6*d*x - 6*c) 
+ (a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*e^(-8*d*x - 8* 
c))*d) + 1/2*log(2*(a - b)*e^(-2*d*x - 2*c) + (a + b)*e^(-4*d*x - 4*c) + a 
 + b)/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 245 vs. \(2 (92) = 184\).

Time = 0.28 (sec) , antiderivative size = 245, normalized size of antiderivative = 2.50 \[ \int \frac {\tanh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx=\frac {\frac {2 \, \log \left ({\left | a {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + b {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + 2 \, a - 2 \, b \right |}\right )}{a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}} - \frac {3 \, a {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )}^{2} + 3 \, b {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )}^{2} + 4 \, a {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} - 4 \, b {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} - 4 \, a - 4 \, b}{{\left (a^{2} + 2 \, a b + b^{2}\right )} {\left (a {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + b {\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + 2 \, a - 2 \, b\right )}^{2}}}{4 \, d} \] Input:

integrate(tanh(d*x+c)^3/(a+b*tanh(d*x+c)^2)^3,x, algorithm="giac")
 

Output:

1/4*(2*log(abs(a*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) + b*(e^(2*d*x + 2*c) 
 + e^(-2*d*x - 2*c)) + 2*a - 2*b))/(a^3 + 3*a^2*b + 3*a*b^2 + b^3) - (3*a* 
(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c))^2 + 3*b*(e^(2*d*x + 2*c) + e^(-2*d*x 
- 2*c))^2 + 4*a*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) - 4*b*(e^(2*d*x + 2*c 
) + e^(-2*d*x - 2*c)) - 4*a - 4*b)/((a^2 + 2*a*b + b^2)*(a*(e^(2*d*x + 2*c 
) + e^(-2*d*x - 2*c)) + b*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) + 2*a - 2*b 
)^2))/d
 

Mupad [B] (verification not implemented)

Time = 2.84 (sec) , antiderivative size = 397, normalized size of antiderivative = 4.05 \[ \int \frac {\tanh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx=-\frac {-a^3+b^3\,\left (2\,{\mathrm {tanh}\left (c+d\,x\right )}^2+{\mathrm {tanh}\left (c+d\,x\right )}^4\,\mathrm {atan}\left (\frac {a\,{\mathrm {tanh}\left (c+d\,x\right )}^2\,1{}\mathrm {i}+b\,{\mathrm {tanh}\left (c+d\,x\right )}^2\,1{}\mathrm {i}}{2\,a-a\,{\mathrm {tanh}\left (c+d\,x\right )}^2+b\,{\mathrm {tanh}\left (c+d\,x\right )}^2}\right )\,4{}\mathrm {i}\right )+a\,b^2\,\left (2\,{\mathrm {tanh}\left (c+d\,x\right )}^2+1+{\mathrm {tanh}\left (c+d\,x\right )}^2\,\mathrm {atan}\left (\frac {a\,{\mathrm {tanh}\left (c+d\,x\right )}^2\,1{}\mathrm {i}+b\,{\mathrm {tanh}\left (c+d\,x\right )}^2\,1{}\mathrm {i}}{2\,a-a\,{\mathrm {tanh}\left (c+d\,x\right )}^2+b\,{\mathrm {tanh}\left (c+d\,x\right )}^2}\right )\,8{}\mathrm {i}\right )+a^2\,b\,\mathrm {atan}\left (\frac {a\,{\mathrm {tanh}\left (c+d\,x\right )}^2\,1{}\mathrm {i}+b\,{\mathrm {tanh}\left (c+d\,x\right )}^2\,1{}\mathrm {i}}{2\,a-a\,{\mathrm {tanh}\left (c+d\,x\right )}^2+b\,{\mathrm {tanh}\left (c+d\,x\right )}^2}\right )\,4{}\mathrm {i}}{4\,d\,a^5\,b+8\,d\,a^4\,b^2\,{\mathrm {tanh}\left (c+d\,x\right )}^2+12\,d\,a^4\,b^2+4\,d\,a^3\,b^3\,{\mathrm {tanh}\left (c+d\,x\right )}^4+24\,d\,a^3\,b^3\,{\mathrm {tanh}\left (c+d\,x\right )}^2+12\,d\,a^3\,b^3+12\,d\,a^2\,b^4\,{\mathrm {tanh}\left (c+d\,x\right )}^4+24\,d\,a^2\,b^4\,{\mathrm {tanh}\left (c+d\,x\right )}^2+4\,d\,a^2\,b^4+12\,d\,a\,b^5\,{\mathrm {tanh}\left (c+d\,x\right )}^4+8\,d\,a\,b^5\,{\mathrm {tanh}\left (c+d\,x\right )}^2+4\,d\,b^6\,{\mathrm {tanh}\left (c+d\,x\right )}^4} \] Input:

int(tanh(c + d*x)^3/(a + b*tanh(c + d*x)^2)^3,x)
 

Output:

-(b^3*(tanh(c + d*x)^4*atan((a*tanh(c + d*x)^2*1i + b*tanh(c + d*x)^2*1i)/ 
(2*a - a*tanh(c + d*x)^2 + b*tanh(c + d*x)^2))*4i + 2*tanh(c + d*x)^2) - a 
^3 + a*b^2*(tanh(c + d*x)^2*atan((a*tanh(c + d*x)^2*1i + b*tanh(c + d*x)^2 
*1i)/(2*a - a*tanh(c + d*x)^2 + b*tanh(c + d*x)^2))*8i + 2*tanh(c + d*x)^2 
 + 1) + a^2*b*atan((a*tanh(c + d*x)^2*1i + b*tanh(c + d*x)^2*1i)/(2*a - a* 
tanh(c + d*x)^2 + b*tanh(c + d*x)^2))*4i)/(4*a^2*b^4*d + 12*a^3*b^3*d + 12 
*a^4*b^2*d + 4*b^6*d*tanh(c + d*x)^4 + 4*a^5*b*d + 24*a^2*b^4*d*tanh(c + d 
*x)^2 + 24*a^3*b^3*d*tanh(c + d*x)^2 + 8*a^4*b^2*d*tanh(c + d*x)^2 + 12*a^ 
2*b^4*d*tanh(c + d*x)^4 + 4*a^3*b^3*d*tanh(c + d*x)^4 + 8*a*b^5*d*tanh(c + 
 d*x)^2 + 12*a*b^5*d*tanh(c + d*x)^4)
 

Reduce [B] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 10556, normalized size of antiderivative = 107.71 \[ \int \frac {\tanh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx =\text {Too large to display} \] Input:

int(tanh(d*x+c)^3/(a+b*tanh(d*x+c)^2)^3,x)
 

Output:

(2*e**(8*c + 8*d*x)*log(e**(2*c + 2*d*x)*sqrt(a + b) + sqrt(a + b) - 2*e** 
(c + d*x)*sqrt(b))*tanh(c + d*x)**4*a**3*b**3 + 2*e**(8*c + 8*d*x)*log(e** 
(2*c + 2*d*x)*sqrt(a + b) + sqrt(a + b) - 2*e**(c + d*x)*sqrt(b))*tanh(c + 
 d*x)**4*a**2*b**4 - 2*e**(8*c + 8*d*x)*log(e**(2*c + 2*d*x)*sqrt(a + b) + 
 sqrt(a + b) - 2*e**(c + d*x)*sqrt(b))*tanh(c + d*x)**4*a*b**5 - 2*e**(8*c 
 + 8*d*x)*log(e**(2*c + 2*d*x)*sqrt(a + b) + sqrt(a + b) - 2*e**(c + d*x)* 
sqrt(b))*tanh(c + d*x)**4*b**6 + 4*e**(8*c + 8*d*x)*log(e**(2*c + 2*d*x)*s 
qrt(a + b) + sqrt(a + b) - 2*e**(c + d*x)*sqrt(b))*tanh(c + d*x)**2*a**4*b 
**2 + 4*e**(8*c + 8*d*x)*log(e**(2*c + 2*d*x)*sqrt(a + b) + sqrt(a + b) - 
2*e**(c + d*x)*sqrt(b))*tanh(c + d*x)**2*a**3*b**3 - 4*e**(8*c + 8*d*x)*lo 
g(e**(2*c + 2*d*x)*sqrt(a + b) + sqrt(a + b) - 2*e**(c + d*x)*sqrt(b))*tan 
h(c + d*x)**2*a**2*b**4 - 4*e**(8*c + 8*d*x)*log(e**(2*c + 2*d*x)*sqrt(a + 
 b) + sqrt(a + b) - 2*e**(c + d*x)*sqrt(b))*tanh(c + d*x)**2*a*b**5 + 2*e* 
*(8*c + 8*d*x)*log(e**(2*c + 2*d*x)*sqrt(a + b) + sqrt(a + b) - 2*e**(c + 
d*x)*sqrt(b))*a**5*b + 2*e**(8*c + 8*d*x)*log(e**(2*c + 2*d*x)*sqrt(a + b) 
 + sqrt(a + b) - 2*e**(c + d*x)*sqrt(b))*a**4*b**2 - 2*e**(8*c + 8*d*x)*lo 
g(e**(2*c + 2*d*x)*sqrt(a + b) + sqrt(a + b) - 2*e**(c + d*x)*sqrt(b))*a** 
3*b**3 - 2*e**(8*c + 8*d*x)*log(e**(2*c + 2*d*x)*sqrt(a + b) + sqrt(a + b) 
 - 2*e**(c + d*x)*sqrt(b))*a**2*b**4 + 2*e**(8*c + 8*d*x)*log(e**(2*c + 2* 
d*x)*sqrt(a + b) + sqrt(a + b) + 2*e**(c + d*x)*sqrt(b))*tanh(c + d*x)*...