\(\int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx\) [236]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 17, antiderivative size = 51 \[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {a+b}}-\frac {\coth (x) \sqrt {a+b \tanh ^2(x)}}{a} \] Output:

arctanh((a+b)^(1/2)*tanh(x)/(a+b*tanh(x)^2)^(1/2))/(a+b)^(1/2)-coth(x)*(a+ 
b*tanh(x)^2)^(1/2)/a
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 2.92 (sec) , antiderivative size = 130, normalized size of antiderivative = 2.55 \[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=-\frac {\cosh ^2(x) \coth (x) \left (1+\frac {b \tanh ^2(x)}{a}\right ) \left (-\frac {4 (a+b) \operatorname {Hypergeometric2F1}\left (2,2,\frac {5}{2},-\frac {(a+b) \sinh ^2(x)}{a}\right ) \sinh ^2(x) \left (a+b \tanh ^2(x)\right )}{3 a^2}+\frac {\arcsin \left (\sqrt {-\frac {(a+b) \sinh ^2(x)}{a}}\right ) \left (a+2 b \tanh ^2(x)\right )}{a \sqrt {-\frac {(a+b) \cosh ^2(x) \sinh ^2(x) \left (a+b \tanh ^2(x)\right )}{a^2}}}\right )}{\sqrt {a+b \tanh ^2(x)}} \] Input:

Integrate[Coth[x]^2/Sqrt[a + b*Tanh[x]^2],x]
 

Output:

-((Cosh[x]^2*Coth[x]*(1 + (b*Tanh[x]^2)/a)*((-4*(a + b)*Hypergeometric2F1[ 
2, 2, 5/2, -(((a + b)*Sinh[x]^2)/a)]*Sinh[x]^2*(a + b*Tanh[x]^2))/(3*a^2) 
+ (ArcSin[Sqrt[-(((a + b)*Sinh[x]^2)/a)]]*(a + 2*b*Tanh[x]^2))/(a*Sqrt[-(( 
(a + b)*Cosh[x]^2*Sinh[x]^2*(a + b*Tanh[x]^2))/a^2)])))/Sqrt[a + b*Tanh[x] 
^2])
 

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.471, Rules used = {3042, 25, 4153, 25, 382, 27, 291, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {1}{\tan (i x)^2 \sqrt {a-b \tan (i x)^2}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {1}{\tan (i x)^2 \sqrt {a-b \tan (i x)^2}}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle -\int -\frac {\coth ^2(x)}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh (x)\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {\coth ^2(x)}{\left (1-\tanh ^2(x)\right ) \sqrt {a+b \tanh ^2(x)}}d\tanh (x)\)

\(\Big \downarrow \) 382

\(\displaystyle \frac {\int \frac {a}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh (x)}{a}-\frac {\coth (x) \sqrt {a+b \tanh ^2(x)}}{a}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh (x)-\frac {\coth (x) \sqrt {a+b \tanh ^2(x)}}{a}\)

\(\Big \downarrow \) 291

\(\displaystyle \int \frac {1}{1-\frac {(a+b) \tanh ^2(x)}{b \tanh ^2(x)+a}}d\frac {\tanh (x)}{\sqrt {b \tanh ^2(x)+a}}-\frac {\coth (x) \sqrt {a+b \tanh ^2(x)}}{a}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\text {arctanh}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {a+b}}-\frac {\coth (x) \sqrt {a+b \tanh ^2(x)}}{a}\)

Input:

Int[Coth[x]^2/Sqrt[a + b*Tanh[x]^2],x]
 

Output:

ArcTanh[(Sqrt[a + b]*Tanh[x])/Sqrt[a + b*Tanh[x]^2]]/Sqrt[a + b] - (Coth[x 
]*Sqrt[a + b*Tanh[x]^2])/a
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 382
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> Simp[(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/ 
(a*c*e*(m + 1))), x] - Simp[1/(a*c*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b* 
x^2)^p*(c + d*x^2)^q*Simp[(b*c + a*d)*(m + 3) + 2*(b*c*p + a*d*q) + b*d*(m 
+ 2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[ 
b*c - a*d, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
Maple [F]

\[\int \frac {\coth \left (x \right )^{2}}{\sqrt {a +b \tanh \left (x \right )^{2}}}d x\]

Input:

int(coth(x)^2/(a+b*tanh(x)^2)^(1/2),x)
 

Output:

int(coth(x)^2/(a+b*tanh(x)^2)^(1/2),x)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 468 vs. \(2 (43) = 86\).

Time = 0.14 (sec) , antiderivative size = 1565, normalized size of antiderivative = 30.69 \[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\text {Too large to display} \] Input:

integrate(coth(x)^2/(a+b*tanh(x)^2)^(1/2),x, algorithm="fricas")
 

Output:

[1/4*((a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 - a)*sqrt(a + b)*lo 
g(-((a*b^2 + b^3)*cosh(x)^8 + 8*(a*b^2 + b^3)*cosh(x)*sinh(x)^7 + (a*b^2 + 
 b^3)*sinh(x)^8 - 2*(a*b^2 + 2*b^3)*cosh(x)^6 - 2*(a*b^2 + 2*b^3 - 14*(a*b 
^2 + b^3)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a*b^2 + b^3)*cosh(x)^3 - 3*(a*b^2 
+ 2*b^3)*cosh(x))*sinh(x)^5 + (a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^4 + 
(70*(a*b^2 + b^3)*cosh(x)^4 + a^3 - a^2*b + 4*a*b^2 + 6*b^3 - 30*(a*b^2 + 
2*b^3)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a*b^2 + b^3)*cosh(x)^5 - 10*(a*b^2 + 
2*b^3)*cosh(x)^3 + (a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x))*sinh(x)^3 + a^ 
3 + 3*a^2*b + 3*a*b^2 + b^3 + 2*(a^3 - 3*a*b^2 - 2*b^3)*cosh(x)^2 + 2*(14* 
(a*b^2 + b^3)*cosh(x)^6 - 15*(a*b^2 + 2*b^3)*cosh(x)^4 + a^3 - 3*a*b^2 - 2 
*b^3 + 3*(a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(b 
^2*cosh(x)^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 - 3*b^2*cosh(x)^4 + 
 3*(5*b^2*cosh(x)^2 - b^2)*sinh(x)^4 + 4*(5*b^2*cosh(x)^3 - 3*b^2*cosh(x)) 
*sinh(x)^3 - (a^2 - 2*a*b - 3*b^2)*cosh(x)^2 + (15*b^2*cosh(x)^4 - 18*b^2* 
cosh(x)^2 - a^2 + 2*a*b + 3*b^2)*sinh(x)^2 - a^2 - 2*a*b - b^2 + 2*(3*b^2* 
cosh(x)^5 - 6*b^2*cosh(x)^3 - (a^2 - 2*a*b - 3*b^2)*cosh(x))*sinh(x))*sqrt 
(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 
2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a*b^2 + b^3)*cosh(x)^7 - 3*(a*b^2 
+ 2*b^3)*cosh(x)^5 + (a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^3 + (a^3 - 3* 
a*b^2 - 2*b^3)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*...
 

Sympy [F]

\[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\int \frac {\coth ^{2}{\left (x \right )}}{\sqrt {a + b \tanh ^{2}{\left (x \right )}}}\, dx \] Input:

integrate(coth(x)**2/(a+b*tanh(x)**2)**(1/2),x)
 

Output:

Integral(coth(x)**2/sqrt(a + b*tanh(x)**2), x)
 

Maxima [F]

\[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\int { \frac {\coth \left (x\right )^{2}}{\sqrt {b \tanh \left (x\right )^{2} + a}} \,d x } \] Input:

integrate(coth(x)^2/(a+b*tanh(x)^2)^(1/2),x, algorithm="maxima")
 

Output:

integrate(coth(x)^2/sqrt(b*tanh(x)^2 + a), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 343 vs. \(2 (43) = 86\).

Time = 0.31 (sec) , antiderivative size = 343, normalized size of antiderivative = 6.73 \[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=-\frac {\log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{2 \, \sqrt {a + b}} - \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right )}{2 \, \sqrt {a + b}} + \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right )}{2 \, \sqrt {a + b}} + \frac {4 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b}\right )}}{{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} - 2 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} \sqrt {a + b} - 3 \, a + b} \] Input:

integrate(coth(x)^2/(a+b*tanh(x)^2)^(1/2),x, algorithm="giac")
 

Output:

-1/2*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2 
*x) - 2*b*e^(2*x) + a + b))*(a + b) - sqrt(a + b)*(a - b)))/sqrt(a + b) - 
1/2*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x 
) - 2*b*e^(2*x) + a + b) + sqrt(a + b)))/sqrt(a + b) + 1/2*log(abs(-sqrt(a 
 + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a 
 + b) - sqrt(a + b)))/sqrt(a + b) + 4*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x 
) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b))/((sqrt(a 
 + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a 
 + b))^2 - 2*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2* 
x) - 2*b*e^(2*x) + a + b))*sqrt(a + b) - 3*a + b)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\int \frac {{\mathrm {coth}\left (x\right )}^2}{\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}} \,d x \] Input:

int(coth(x)^2/(a + b*tanh(x)^2)^(1/2),x)
 

Output:

int(coth(x)^2/(a + b*tanh(x)^2)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\coth ^2(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\int \frac {\sqrt {\tanh \left (x \right )^{2} b +a}\, \coth \left (x \right )^{2}}{\tanh \left (x \right )^{2} b +a}d x \] Input:

int(coth(x)^2/(a+b*tanh(x)^2)^(1/2),x)
 

Output:

int((sqrt(tanh(x)**2*b + a)*coth(x)**2)/(tanh(x)**2*b + a),x)